Please use this identifier to cite or link to this item: http://13.232.72.61:8080/jspui/handle/123456789/914
Full metadata record
DC FieldValueLanguage
dc.contributor.authorManjunatha, G.-
dc.contributor.authorMurali, R.-
dc.contributor.authorGirisha, A.-
dc.date.accessioned2019-01-13T09:09:15Z-
dc.date.available2019-01-13T09:09:15Z-
dc.date.issued2014-07-
dc.identifier.citationManjunatha, G., Murali, R., & Girisha, (2014). A hamiltonian laceability in line graphs. International Journal of Computer Applications, 98(12), 17-25.en_US
dc.identifier.issn0975 – 8887-
dc.identifier.urihttp://13.232.72.61:8080/jspui/handle/123456789/914-
dc.description.abstractA Connected graph G is a Hamiltonian laceable if there exists in G a Hamiltonian path between every pair of vertices in G at an odd distance. G is a Hamiltonian-t-Laceable (Hamiltoniant*- Laceable) if there exists in G a Hamiltonian path between every pair (at least one pair) of vertices at distance‘t’ in G. 1≤ t ≤ diamG. In this paper we explore the Hamiltonian-t*- laceability number ( * ) t  of graph L (G) i.e., Line Graph of G and also explore Hamiltonian-t*-Laceable of Line Graphs of Sunlet graph, Helm graph and Gear graph for t=1,2 and 3.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Computer Applicationsen_US
dc.subjectMathematicsen_US
dc.subjectConnected graphen_US
dc.subjectSun let graphen_US
dc.subjectHelm graphen_US
dc.titleHamiltonian Laceability in Line Graphs.en_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
Hamilton_lace_inLineGraphs-2-10.pdf782.85 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.