CBCS SCHEME - Make-Up Exam

E SFT		BMATE301/BEE301
and with the		
MC Third Semester B.E.	/B.Tech. Degree	Examination, June/July 2025

Engineering Mathematics for EEE

Max. Marks: 100

Notes I. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

Tanne: 3 hrs.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Solve: $[4D^4 - 4D^3 - 23D^2 + 12D + 36]y = 0$	6	L1	CO1
	b.	Solve: $(D^2 - 4D + 4)y = e^{2x} + \cos 2x + 5$	7	L2	CO1
	c.	Solve: $(2x+1)^2 y'' - 6(2x+1)y' + 16y = 8(2x+1)^2$	7	L3	CO1
		OR			
Q.2	a.	Solve: $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$	6	L1	CO1
	b.	Solve: $(D^2 + 4)y = x^2 + \sin 2x + 2^{-x}$	7	L2	CO1
	c.	Solve: $x^3y''' + 3x^2y'' + xy' + 8y = 65\cos(\log x)$	7	L3	COI
		Module – 2			
Q.3	a.	Fit a curve of the form $y = a + bx + cx^2$ to the following data: $x: 0 \ 1 \ 2 \ 3 \ 4 \ 5$ $y: 1 \ 3 \ 7 \ 13 \ 21 \ 31$	6	L2	CO2
	b.	Calculate the co-efficient of correlation and obtain the lines of regression for the following data: x: 3 5 6 9 10 12 15 20 22 28 y: 10 12 15 18 20 22 27 30 32 34	7	L3	CO2
	c.	Ten students got the following percentage of marks in two subjects x and y. Compute their rank correlation coefficient: Marks in x 78 36 98 25 75 82 90 62 65 39 Marks in y 84 51 91 60 68 62 86 58 53 47	7	L3	CO2
		OR			
Q.4	a.	Fit a curve of the form $y = ax^b$ to the given data x: 1 2 3 4 5 6 y: 2.98 4.26 5.21 6.1 6.8 7.5	6	L2	CO2
	b.	Given that $8x - 10y + 66 = 0$ and $40x - 18y - 214 = 0$ are the regression equations. Calculate: i) Mean value of x's and y's ii) Correlation coefficient iii) Find σ_y if $\sigma_x =$	7	L3	CO2
	c.	Compute the rank correlation co-efficient for the following data: x: 68 64 75 50 64 80 75 40 55 64 y: 62 58 68 45 81 60 68 48 50 70	7	L3	CO2
		1 of 3			

		Module – 3			
Q.5	a.	Obtain the Fourier series of the function $f(x) = \left(\frac{\pi - x}{2}\right)^2$ over the interval	6	L3	CO3
		$0 < x < 2\pi$. Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$			
	b.	Expand the function $f(x) = (x-1)^2$ in $0 \le x \le 1$ in the half range cosine series.	7	L3	CO3
		Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$		167 A.B.	
	c.	Find the constant term and the first harmonic in the Fourier series for $f(X)$ given by the table	7	L2	CO3
		OR			
Q.6	a.	Expand the function $f(x) = \begin{cases} 1 + 2x, & \text{in } -3 < x \le 0 \\ 1 - 2x, & \text{in } 0 \le x < 3 \end{cases}$ as a Fourier series and deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.	6	L3	CO3
	b.	Obtain the cosine half-range series for the function $f(x) = x(\pi - x)$ in the	7	L3	CO3
		interval (0, π). Deduce that $\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$			
	c.	Obtain the Fourier series for f(x) upto the first harmonic given by the table	7	L2	CO3
		x: $0 \frac{\pi}{3} \frac{2\pi}{3} \pi \frac{4\pi}{3} \frac{5\pi}{3} 2\pi$ f(x): 7.9 7.2 3.6 0.5 0.9 6.8 7.9			
	<u> </u>	Module – 4		Y 2	CO
Q.7	a.	Find the Fourier transform of the function, $f(x) = \begin{cases} 1 - x^2, & x < 1 \\ 0, & x \ge 1 \end{cases}$. Hence evaluate the integrals $\int_0^x \frac{x \cos x - \sin x}{x^3} dx$.	6	L3	CO4
	b.	Find the Fourier sine transform of $f(x) = e^{- x }$ and hence evaluate	7	L2	CO
		$\int_0^\infty \frac{x \sin mx}{1+x^2} dx, m \ge 0$			
		$2z^2 + 3z$	7	L2	CO
	c.	Find the inverse Z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$.			
		2 of 3			

		OR	LE3	01/BI	£E30
Q.8	a.	e ^{-ax}	6	L2	СО
	b.	Find the Z-transform of the following: i) Sin (3n + 5) ii) (2n - 1) ² .	7	L2	CO
	c.	Solve the difference equation : $U_{n+2} - 3U_{n+1} + 2U_n = 0 \text{ given that } U_0 = 0, \ U_1 = -1.$	7	L3	СО
		Module = 5			
Q.9	a.	The probability distribution of a random variable X is given by the table : $\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	L2	СО
	b.	The number of telephone lines busy at an instant of time is a binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random. What is the probability that: i) No line is busy ii) All lines are busy iii) Atleast one line is busy iv) Atmost line are busy.	7	L2	CO
	c.	The marks of 1000 students in an examination follows a normal distribution with mean 70 and standard deviation 5. Find the number of students whose marks will be: i) Less than 65 ii) More than 75 iii) Between 65 and 75.	7	L3	CO
		OR			
Q.10	a.	Define: i) Null hypothesis ii) Alternate hypothesis iii) Type-I and Type-II errors iv) Level of significance.	6	L1	COS
	b.	Two horses A and B tested according to the time (in seconds) to run a particular race with the following results. Horse A: $\begin{bmatrix} 28 & 30 & 32 & 33 & 33 & 29 & 34 \\ Horse B: & 29 & 30 & 30 & 24 & 27 & 29 \end{bmatrix}$ Test whether there is discriminate between the two horses. [Given $t_{0.05}$ for 11 d.f = 2.2].	7	L2	COS
	c.	A sample analysis of examination results of 500 students was made. It was found that 220 students had failed, 170 had secured third class, 90 had secured second-class and 20 had secured first-class. Do these figures support the general examination result which is in the ratio 4:3:2:1 for the respective categories [Given $\chi^2_{0.05} = 7.81$ for 3 d.f].	7	L2	CO