CBCS SCHEME

USN	UT 01 76		301×	BMATC201
1/10		4	A Comment of the Comm	

Second Semester B.E/B.Tech. Degree Examination, June/July 2025 Mathematics – II for Civil Engineering Stream

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. VTU Formula Hand Book is permitted.

b. By changing order of integration evaluate $\int_{0}^{a} \int_{0}^{2\sqrt{a}x} x^2 dy dx$. 7 L3 CO1 C. Define beta and gamma functions. Show that $\sqrt{\frac{1}{2}} = \sqrt{\pi}$. 6 L2 CO1 OR 2 a. Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy by$ changing into polar coordinator. 7 L3 CO1 b. Find the area bounded between parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double 7 L3 CO1 c. Write a modern mathematical program to evaluate the integral 6 L3 CO5 Module - 2			Module – 1	M	L	C
b. By changing order of integration evaluate $\int_{0}^{\infty} \int_{0}^{\infty} x^{2} dy dx$. c. Define beta and gamma functions. Show that $\sqrt{\frac{1}{2}} = \sqrt{\pi}$. 6 L2 CO1 OR 2 a. Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy by$ changing into polar coordinator. 7 L3 CO1 b. Find the area bounded between parabolas $y^{2} = 4ax$ and $x^{2} = 4ay$ using double 7 L3 CO1 c. Write a modern mathematical program to evaluate the integral 6 L3 CO5 $\int_{0}^{33 = x^{3} = x^{-y}} \int_{0}^{x} xyz dz dy dx$. Module – 2 3 a. Find the directional derivative at $\phi = 4xz^{3} - 2x^{2}y^{2}z$ at $(2, -1, 2)$ along the 7 L2 CO2 b. If $\phi = x^{2} + y^{2} + z^{2}$ and $\overrightarrow{F} = \nabla \phi$ then find grad ϕ , div \overrightarrow{F} and curl \overrightarrow{F} . 7 L2 CO2 c. Show that $\overrightarrow{F} = \frac{x_{1} + y_{1}}{x^{2} + y^{2}}$ is both Solenoidal and irrotational.	1	a.	0 0 A A	7	L3	CO1
Define beta and gamma functions. Show that $\sqrt{\frac{2}{2}} = \sqrt{\pi}$. OR 2 a. Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinator. b. Find the area bounded between parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double 7 L3 CO1 integration. c. Write a modern mathematical program to evaluate the integral 6 L3 CO5 $\int_{0}^{33-x^3-x-y} \int_{0}^{x} \int_{0}^{x} xyz dz dy dx$. Module – 2 3 a. Find the directional derivative at $\phi = 4xz^3 - 2x^2y^2z$ at $(2, -1, 2)$ along the 7 L2 CO2 vector $2i - 3j + 6k$. b. If $\phi = x^2 + y^2 + z^2$ and $\overrightarrow{F} = \nabla \phi$ then find grad ϕ , div \overrightarrow{F} and curl \overrightarrow{F} . 7 L2 CO2 c. Show that $\overrightarrow{F} = \frac{x_1 + y_j}{x^2 + y^2}$ is both Solenoidal and irrotational.		b.		7	L3	CO1
2 a. Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinator. 5 b. Find the area bounded between parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double 7 L3 CO1 integration. 6 c. Write a modern mathematical program to evaluate the integral 6 L3 CO5 $\int_{0}^{3.3 \times 3^3 \times $		c.	Y.	6	L2	C01
2 a. Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy by changing into polar coordinator.$ b. Find the area bounded between parabolas $y^{2} = 4ax$ and $x^{2} = 4ay$ using double 7 L3 CO1 integration. c. Write a modern mathematical program to evaluate the integral 6 L3 CO5 $\int_{0}^{3a+x} \int_{0}^{3-x-y} xyz dz dy dx.$ Module - 2 3 a. Find the directional derivative at $\phi = 4xz^{3} - 2x^{2}y^{2}z$ at $(2, -1, 2)$ along the 7 L2 CO2 b. If $\phi = x^{2} + y^{2} + z^{2}$ and $\overrightarrow{F} = \nabla \phi$ then find grad ϕ , div \overrightarrow{F} and curl \overrightarrow{F} . c. Show that $\overrightarrow{F} = \frac{x_{1} + y_{1}}{x^{2} + y^{2}}$ is both Solenoidal and irrotational.						
integration. c. Write a modern mathematical program to evaluate the integral $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	2	a.	Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy by changing into polar coordinator.$	7	L3	CO1
		b.	Find the area bounded between parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double integration.	7	L3	CO1
3 a. Find the directional derivative at $\phi = 4xz^3 - 2x^2y^2z$ at $(2, -1, 2)$ along the vector $2i - 3j + 6k$. b. If $\phi = x^2 + y^2 + z^2$ and $\overrightarrow{F} = \nabla \phi$ then find grad ϕ , div \overrightarrow{F} and curl \overrightarrow{F} . 7 L2 CO2 c. Show that $\overrightarrow{F} = \frac{x_i + y_j}{x^2 + y^2}$ is both Solenoidal and irrotational.		c.	3 3-x 3-x-y	6	L3	CO5
3 a. Find the directional derivative at $\phi = 4xz^3 - 2x^2y^2z$ at $(2, -1, 2)$ along the vector $2i - 3j + 6k$. b. If $\phi = x^2 + y^2 + z^2$ and $\overrightarrow{F} = \nabla \phi$ then find grad ϕ , div \overrightarrow{F} and curl \overrightarrow{F} . 7 L2 CO2 c. Show that $\overrightarrow{F} = \frac{x_i + y_j}{x^2 + y^2}$ is both Solenoidal and irrotational.			Module – 2			
c. Show that $\vec{F} = \frac{x_i + y_j}{x^2 + y^2}$ is both Solenoidal and irrotational.	3	a.	Find the directional derivative at $\phi = 4xz^3 - 2x^2y^2z$ at $(2, -1, 2)$ along the	7	L2	CO2
		b.	If $\phi = x^2 + y^2 + z^2$ and $\overrightarrow{F} = \nabla \phi$ then find grad ϕ , $\overrightarrow{div F}$ and $\overrightarrow{curl F}$.	7	L2	CO2
1 of 3		c.	Show that $\overrightarrow{F} = \frac{x_i + y_j}{x^2 + y^2}$ is both Solenoidal and irrotational.	6	L2	CO2
			1 of 3			

			BMATC201			
		OR				
4	a.	Compute the line integral $\int [(x^2 + xy)dx + (x^2 + y^2)dy]$ where c is the square	7	L2	CO2	
		formed by the lines $y = \pm 1$ and $x = \pm 1$.				
	b.	Apply stokes theorem to evaluate $\int_{c}^{c} (ydx + zdy + xdz)$ where c is the curve of	7	L3	CO2	
		intersection $x^2 + y^2 + z^2 = a^2$ and $x + z = a$.		1.2	CO5	
	c.	Write a modern mathematical tool program to find the gradient of $\phi = x^2y + 2xz - 4$.	6	L3	CO5	
		Module – 3				
5	a.	Form the partial differential equation by eliminating the arbitrary constant from the relation. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	7	L2	CO3	
			7	L3	CO3	
	b.	Solve the equation $\frac{\partial^2 z}{\partial u^2} = x + y$ given that $z = y^2$ when $x = 0$ and $\frac{\partial z}{\partial x} = 0$ when $x = 2$.				
	C.	Solve $y^2p - xyq = x(z - 2y)$.	6	L3	CO3	
		OR OR	_	Y 0	CO2	
6	a.	Form the partial differential equation by eliminating arbitrary function from the equation $z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$.	7	L2	CO3	
	b.	Solve $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + 2z = 0$ subject to $z = e^y$ and $\frac{\partial z}{\partial x} = 0$ when $x = 0$.	7	L3	CO3	
	c.	With usual notation derive a one-dimensional heat equation.	6	L2	CO3	
		Y' A TOTAL OF THE PARTY OF THE	-			
		Module - 4	7	L3	CO4	
7	a.	Using the Regula – Falsi method find the fifth root of 10 assuming that the root lies between 1 and 2. Carry out three approximations.		LS	004	
	b.	Given that :	7	L3	CO	
		Find the value of y at $x = 0.1$, by using appropriate formula.				
	c.	Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} d\theta$ by Simpson's $\frac{1}{3}^{rd}$ rule taking 7 ordinates.	6	L3	CO4	

2 of 3

			Bl	MAT	C201
8	a.	Use Newton – Raphson method to find the approximate root of the equation $e^x - 3x = 0$ that lies between 0 and 1. Perform and approximate.	7	L3	CO4
	b.	Using Lagranges interpolation formula find f(18) for the data : x 10 12 19 22 y 24 48 162 200	7	L3	CO4
	c.	Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ by using Simpson's $\frac{3}{8}$ rule taking four equal strips.	6	L3	CO4
		Module – 5			
9	a.	Use Taylor's series method solve the initial value problem $\frac{dy}{dx} = xy - 1$, $y(1) = 2$ at the point $x = 1.02$, consider three non-zero terms.	7	L3	CO4
	b.	Using fourth order Runge-Kutta method find y at $x = 0.1$, given that $\frac{dy}{dx} = x(1+xy)$, $y(0) = 1$.	7	L3	CO4
	c.	Solve the differential equation $\frac{dy}{dx} = -xy^2$ under the initial condition $y(0) = 2$, by using modified Euler's method at $x = 0.1$. Take step size $h = 0.1$. Perform three modification.	6	L3	CO4
		OR			
10	a.	Employ Taylor's series method to find y at $x = 0.1$ given that $\frac{dy}{dx} - 2y = 3e^x$, $y(0) = 0$, consider three non-zero terms.	7	L3	CO4
	b.	Applying Milne's predictor—corrector method compute y at $x = 0.8$, for the data $y(0) = 2$, $y(0.2) = 1.9231$, $y = (0.4) = 1.7241$ and $y(0.6) = 1.4706$ to the equation $\frac{dy}{dx} = -xy^2$.	7	L3	CO4
	c.	Write a modern mathematical tool program to solve $\frac{dy}{dx} = 2x + y$, $y(1) = z$ by $R - K 4^{th}$ order method.	6	L3	CO4