21MAT21

Second Semester B.E./B.Tech. Degree Examination, June/July 2025 Advanced Calculus and Numerical Methods

Time: 3 hrs.

Max. Marks: 100

Reservator Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Evaluate :

$$\int_{0}^{2} \int_{0}^{6} \int_{0}^{4-x^{2}} dz \ dy \ dx$$

(06 Marks)

- b. Change the order of integration and hence evaluate $\int \int (1+y)dydx$ (07 Marks)
- Define Beta and Gama function. Prove that $\beta(\frac{1}{2}, \frac{1}{2}) = \pi$

(07 Marks)

a. Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, using double integration.

(06 Marks)

Derive the relation between Beta and Gama function.

(07 Marks)

c. Find the volume of the tetrahedron in the first octant bounded by 4x + 2y + z = 8, using double integration. (07 Marks)

Module-2

- $\vec{v} = (y\sin z \sin x)\hat{i} + (x\sin z + 2yz)\hat{j} + (xy\cos z + y^2)\hat{k}$ A fluid motion is given by show that the motion is irrotational. (06 Marks)
 - b. Find div(\vec{v}) and curl(\vec{v}) of $\vec{v} = (xyz)\hat{i} + (3x^2y)\hat{j} + (xz^2 y^2z)\hat{k}$ at (2, -1, 1) (07 Marks)
 - Find the directional derivative of the function $\phi = x^2 y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the vector $4\hat{i} - 2\hat{j} + \hat{k}$ (07 Marks)

OR

- If a force $\vec{F} = 2x^2y\hat{i} + 3xy\hat{j}$ displays a particle in the xy-plane from (0, 0) to (1, 4) along the curve $y = 4x^2$. Find the work done.
 - b. Using Green's theorem, evaluate $\int (xy x^2) dx + x^2 y dy$ where C is bounded by y = 0, x = 1and y = x. (07 Marks)
 - $\int \vec{F} \cdot d\vec{r}$ by Stoke's theorem, where $\vec{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ and C is the boundary of the rectangle $x = \pm a$, y = 0 and y = b. (07 Marks)

(06 Marks)

Module-3

- Form partial differential equation by eliminating the arbitrary function from $z = f(x^2 + y^2)$.
 - b. Solve $\frac{\partial^2 z}{\partial v^2} + \frac{\partial z}{\partial v} 6z = 0$, given that z = x and $\frac{\partial z}{\partial v} = 0$, when y = 0. (07 Marks)
 - (07 Marks) With usual notations derive a one-dimensional heat equation.

OR

- Solve: z = yq xp
 - Form the partial differential equation from (07 Marks) Z = f(y + 2x) + g(y - 3x)
 - c. Solve: $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$ subject to the conditions $z(x, 0) = x^2$ and $z(1, y) = \cos y$. (07 Marks)

Module-4

- Find a real toot of $x \tan x = -1$ in (2.5, 3) by Regula-Falsi method in four iterations. (06 Marks)
 - b. Apply Newton's general interpolation formula to find u_x . Given that $u_0 = 8$, $u_1 = 11$, $u_4 = 68$, $u_5 = 123$.
 - c. Evaluate $\int_{0}^{3} x^{4} dx$ by Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule. (take n = 6). (07 Marks)

- Using Newton-Raphson method, find real root of $4x e^x = 0$ which is near to 2. (06 Marks)
 - b. Using Simpson's $\left(\frac{3}{8}\right)^{th}$ rule, evaluate $\int_{0.3}^{0.3} \sqrt{1-8x^3} dx$ (n = 6) (07 Marks)
 - In the following table, values of y are consecutive terms of a series of which 23.6 is the 6th term. Find the first and tenth terms of the series:

term. Find the first and tenth terms of the serie								Series
1	Х	3	4	5	6	7	8	9
	Α.	4.0	2.1	14.5	23.6	36.2	52.8	73.9
	У	4.0	0.4	17.0	2010	0 0 0		

(07 Marks)

Module-5

- a. Employ Taylor's series method, to find y(0.1) from $\frac{dy}{dx} = y + e^{2x}$ with y(0) = 1 upto 3^{rd} degree term.
 - b. Apply the Runge-Kutta method of 4^{th} order find y at x = 0.1. Given that (07 Marks) y(0) = 1, (h = 0.1)

21MAT21

c. Find y(0.4) using Milne's predictor-corrector method, given $y' = \frac{(1+x^2)y^2}{2}$; y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21 (07 Marks)

OR

10 a. Use Tayler's series method to find y(0.1).

Given
$$\frac{dy}{dx} = y + \sin x$$
: $y(0) = 1$ up to the term containing x^3 . (06 Marks)

- b. Using Modified Euler's method find y(0.1), taking h = 0.05, given that $\frac{dy}{dx} = x^2 + y : y(0) = 1$ (07 Marks)
- c. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$: y(0) = 1, find y(0.2) taking h = 0.2, using Runge Kutta 4th order method.
