

MBA204

Second Semester MBA Degree Examination, June/July 2025 Operation Research

Time: 3 hrs.

Max. Marks: 100

Notes: 1. Answer any FOUR full questions from Q.No. 1 to Q.No. 7

2. Question No. 8 is compulsory.

3. M:Marks, L:Bloom'slevel, C: Course outcomes.

0.1		Give a brief historical devalopment of Operation D	M	L	C
Q.1	_	Give a brief historical development of Operations Research.	3	LI	CO1
	b.	A firm is engaged in producing two products A and B. Each unit of product A requires 2 kg of raw material and 4 hours of processing time while each unit of product B requires 3 kg of raw material and 3 hours of processing time. The firm has an availability of 100 kg of raw material and 200 hours of processing time. The profit on one unit of product A and B are Rs.80 and Rs.60 respectively. Formulate the problem as an LPP.	7	L3	CO2
	c.	Solve the following LPP using graphical method, $Z_{max} = 6x_1 + 8x_2$, subject to $x_1 + x_2 \le 450$, $2x_1 + x_2 \le 600$ and $x_1, x_2 \ge 0$.	10	L3	CO2
Q.2	a.	State the basic assumptions underlying sequencing problems.	3	L1	CO3
	b.	Define the term Operations Research Mention different phases of operations research.	7	LI	CO1
	c.	Consider the processing time estimates (in minutes) of 5 jobs each of which should go through on two machines M_1 and M_2 in the order M_1 , M_2 . $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	L3	CO3
Q.3	a.	What is meant by an unbalanced transportation problem?	3	L2	CO1
	ь.	Find an initial basic feasible solution to the following Transportation Problem using North West Corner Rule. Destination $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	CO2
	c.	Solve the following assignment problem. Assign the tasks (1, 2 and 3) to the persons (A, B and C) so as to minimize the total cost of assignment. A B C 1 12 11 8 2 8 9 11 3 11 14 12	10	L3	CO2

			10		
Q.4	a.	Write a note on degeneracy of transportation problem.	3	L2	C02
	b.	Solve the following game using the concept of dominance. B I II III II III II 7 2 A II 6 2 7 III 5 2 6	7	1.2	C03
	C.	Solve the following 2 × 3 game using graphical method. B I II III A I 3 11 II 8 5 2	10	L2	C03
Q.5	a.	Write a short note on Decision Theory.	3	L2	CO2
	ь.	Obtain an initial basic feasible solution to the following transportation problem using Vogel's Approximation Method. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	CO2
	c.	Define the following terms with reference to game Theory; i) Pay off matrix ii) Pure Strategy iii) Mixed Strategy iv) Value of Game v) Fair Game	10	L2	CO3
Q.6	a.	Define the term sequencing and state it's importance.	3	LI	CO1
	b.	Explain the Max, Min and Min. Maxprinciples with an example for each.	7	L2	CO3
	c.	Three different operations have to be performed on the machines M_1 , M_2 and M_3 in the order $M_1M_2M_3$. Obtain the optimal sequence if the processing time estimates of four jobs on the three machines are as follows.	10	L3	CO3
Q.7	a.	Describe the phases of project management.	3	L4	CO4
	b.	Differentiate between PERT and CPM.	7	L2	CO4
	c.	A small project consists of the following jobs whose time estimates in days are given in the table. Job 1-2 1-3 2-3 2-5 3-4 3-6 4-5 4-6 5-6 6-7 Time 15 15 3 5 8 12 1 14 3 14 i) Draw an arrow diagram representing the project. ii) Find the critical path and total project duration.	10	L4	CO4