CBCS SCHEME - Summer Semester

BPHYM102/202

First/Second Semester B.E./B.Tech. Degree Examination, June/July 2025

Applied Physics for ME Stream

Time: 3 hrs.

lbrary

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. VTU Formula Hand Book is permitted.

		Module – 1	M	L	С
1	a.	Define forced vibration. Give the theory of forced vibration and hence obtain	9	L2	CO1
		the expression for amplitude.			
	b.	Define Mach number and Mach angle. Mention any four application of shock	6	L1	CO1
		waves.			
	c.	A mass of 6 kg stretches a spring 0.3 m from its equilibrium. The mass is	5	L3	CO1
		removed and another body of mass 1 kg is hanged from the spring. What is			
		the period of motion if the spring is none attached and released?			
_		OR			00:
2	a.	With a neat diagram explain the construction and working of Reddy shock tubes.	8	L2	CO
	b.	Define stiffness factor. Derive the expression for force constant for series and	8	L1	CO
		parallel combination of springs.			
	c,	In a Reddy tube experiment it was found that the time taken by a shock wave	4	L3	CO
		to travel between the two sensors is 195 µs. If the distance between the two			
		sensors is 100 mm and velocity of sound is 340 ms ⁻¹ . Find the mach number			
		of the shock wave.			
		Module – 2			
3	a.	Define Young's modulus (y), Rigidity modulus (η) and poisson's ratio (σ).	10	L2	CO
		Obtain the relation between y , η and σ .			
	b.	State Hook's law, explain the stress-strain curve.	6	L2	CO
	c.	A load of 20 kg produces an extension of 1 mm in a wire of 3 m in length and	4	L3	CO
		1 mm in diameter. Calculate the Youngs modulus of the wire.			
		OR			
	a.	Define Bench's moment. Obtain the expression for Bench's moment for	10	L2	CO
4		material rectangular cross section.			
	b.	Define Fatigue. Explain the factors effecting the Fatigue.	6	L2	CO
	c.	A material has Poission's ratio 0.2. If a uniform rod suffers longitudinal strain	4	L3	CO
		of 4×10^{-3} Calculate the lateral strain.			
		Module – 3			
5_	a.	Derive expression for thermo emf in terms of T_1 and T_2 .	10	L2	CO
	b.	Explain seeback and Peltier effect.	6	L2	CO
	C.	EMF of a thermocouple is 1200μv. When working between 0°C and 100°C.	4	L3	CO
		Its neutral temperature is 300°C. Find the values of a & b.			
		1 of 2			

BPHYM102/202

OR

6	a.	Explain the construction and working of thermocouple.	· o	1.2	CO2
			8	L2	CO2
	b.	The emf of a thermocouple, one junction of which is kept at 0° C is given by $E = at + bt^{2}$	8	L3	CO2
		Determine the neutral temperature, temperature of inversion and Peltier coefficient.			
	c.	The emf on lead - iron thermocouple, ore junction of which is at 0°C is given	4	L3	CO2
		by $E = 1600t - t^2$ where t°C is the temperature of the hot junction.			
		If t = 27°C, Calculate the Peltier coefficient.			
		Module – 4			
7	a.	Describe the Lindey's air liquifier.	8	L2	CO3
	b.	Derive $\Delta T = \frac{P_1 - P_2}{C_p} \left[\frac{29}{RT} - b \right]$ using Joule Thomson effect.	8	L2	CO3
	C.	Calculate the inversion temperature of gas Given $a = 0.244$ atm L^2/mol^2 $b = 0.027$ L/nud and $R = 0.0821$ L atom/K/mol.	4	L3	CO3
		OR			
8	a.	Describe the construction and working of Porous Plug experiment.	8	L2	CO3
	b.	Describe the construction and working of platinum resistance thermometers.	8	L2	CO3
	c.	In a diffraction grating experiment laser light undergoes second order	4	L3	CO5
		diffraction for diffraction angle 1.48°. The grating constant $d = 5.05 \times 10^{-5} \text{m}$			
		and the distance between the grating and the source is 0.60 m, find the			
		wavelength of laser light.			
		Module – 5			
9	a.	Describe the construction and working of scanning electron microscope (SEM)	8	L2	CO4
	b.	Describe the construction and working of transmission electron microscope (TEM)	8	L2	CO4
	c.	In a calcite crystal, second order Bragg's reflections occur from the planes	4	L3	CO4
		with d-spacing 3 A°, at a glancing angle of 24°. Calculate the path difference			
		between X - rays reflected from the two adjacent planes.			
		OR			
10	a.	Describe the construction and working of X – ray photoelectron spectroscopy.	8	L2	CO4
	b.	Describe the construction and working of Atomic force microscope.	8	L2	CO5
	C.	Determine the crystal size given the wavelength of X-ray 12 nm, the peak	4	L3	CO4
		width 0.5° and peak position 23° for a cubic crystal. Given k = 0.94.			