Fifth Semester B.E./B.Tech. Degree Examination, June/July 2025 Aircraft Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define the following:	10	L1	CO1
		i) Stress tensor			
		ii) Principal stress			
		iii) Factor of safety			
		iv) Normal stress			
		v) Principal planes			
	b.	Evaluate the principal stresses and principal planes for the state of stress	10	L3	CO ₁
		shown in the below Fig.Q1(b).			
		20N/mm ²		527	
					4
		60 N/mm2			
		26N/mm ²			

		Fig.Q1(b)			
		OR			T
Q.2	a.	A solid circular shaft is subjected to a bending moment of 60 KNm and a	10	L3	CO ₁
		torque of 6 KNm. Design the diameter of the shaft according to:			
		i) Maximum principal stress theory			
		ii) Maximum shear stress theory iii) Maximum strain energy theory			
	h	iii) Maximum strain energy theory Explain the following:	10	L2	CO1
	b.	i) Maximum principal strain theory	10	LZ	COI
		ii) Maximum distortions energy theory.	12		
		Module – 2			
Q.3	a.	Define impact strength. Writ the equations for impact stresses due to axial,	10	L2	CO2
Q.S	a.	bending loads and explain.	10		C 0 2
	b.	Define the following:	10	L1	CO2
	٥.	i) Fluctuating stress	10		002
		ii) Endurance limit			
		iii) Stress concentration factor			
		iv) Factor of safety for fatigue loading			
		v) Alternating stress.			
		OR			
Q.4	a.	With suitable sketches, explain the Goodman and soderberg relationship.	10	L2	CO2
	b.	Discuss the following:	10	L2	CO2
		i) Stresses due to combined loading			
		ii) Cumulative fatigue damage.			
		1 of 3			

Q.5	a.	Module – 3			
Q.5	a.	Module – 3			
Q.5	a.	Module – 3			
	a	List the assumptions made in Euler's column theory and derive the	10	L2	CO2
		equation for critical load for columns with one end fixed and the other end	10		CO2
	8	free.			
	b.	A T-section 150 mm × 120 mm x 20 mm is used as a strut of 4 m long with	10	L3	CO2
	٥.	hinged at its both ends. Calculate the crippling load, if Young's modulus	10		002
		for the material be 200 GPa.			
		OR			
Q.6	a.	Define load factor. Illustrate the flight envelope and discuss the key factors.	10	L2	CO2
Q.0	b.	The aircraft shown in Fig.Q6(b)(i), weights 135 N and has landed such that,	10	L4	CO2
	υ.	at the instant of impact, the ground reaction on each main under carriage	10	LH	CO2
		wheel is 200 KN and its vertical velocity is 3.5 m/s. If each under carriage			
		wheel weighs 2.25 kN and is attached to an oleo strut, as shown in			
		Fig.Q6(b)(ii), calculate the axial load and bending moment in the strut; the			
		strut may be assumed to be vertical. Determine also the shortening of the			
		strut may be assumed to be vertical. Determine also the shortening of the strut when the vertical velocity of the aircraft is zero. Finally calculate the			
		shear force and bending moment in the wing at the section AA if the wing,			
		out board of this section, weighs 6.6 kN and has its CG 3.05 m from AA.			
		out board of this section, weighs 0.0 kW and has its CO 5.05 III from AA.			
		A Ironw			
		Isomm			
		No N			
		A A A			
		THE NAME OF THE PARTY OF THE PA			
		4			
		Fig.Q6(b)(i) Fig.Q6(b)(ii)			
O =		Module – 4			
Q.7	a.	A king post truss of 8 m span is loaded as shown is Fig.Q7(a). Find the	14	L3	CO ₂
		forces in each member.			
		04.7			
		2KN			
		2kN 2KN			
		1300			
		I KN B I KN			
		A 130°			
		F G H			
		8m			
		Fig.Q7(a)			
	b.	Differentiate statically determinate and indeterminate structures.	06	L1	CO ₂

				1011	
		OR			
Q.8	a.	State and derive Clapeyron's Three moment equation.	10	L2	CO ₂
	b.	Evaluate the bending moment and shear force diagrams of the beam shown	10	L3	CO ₂
	-	in Fig.Q8(b). What are the reactions at the supports?		2	
		12KN			
		, , , , , , , , , , , , , , , , , , , ,			
		2 KN/m			
		Ameter I			
		A T B			
		bm LB 6m			
		Fig O9(h)			
		Fig.Q8(b)			
		Module – 5			
0.0			10	L2	CO2
Q.9	a.	Derive the equation bending stress equation for unsymmetrical sections and determine the position of its neural axis.	10	LZ	CO ₃
	h	With relevant sketches, explain the sign conventions and notions for	10	L1	CO3
	b.	unsymmetrical section's bending stress.	10	LI	COS
		OR		-	
0.10		A beam having the cross-section shown in Fig.Q10(a) is subjected to a	15	L4	CO3
Q.10	a.	bending moment of 1500 Nm in a vertical plane. Calculate the maximum	13	L	COS
		bending stress stating the point at which its acts.			2
		bending stress staring the point at which its acts.			
		40mm & Bomm			
		y A B			
		8 mm			
		80mm			
		ZY CV , Y			
		¥			1
		&mm -			
		Fig.Q10(a)			
	7	White the heading strong agustions for armmatrical sections and avalous its	05	L1	CO3
	b.	Write the bending stress equations for symmetrical sections and explain its	03		003