

21AE52

Semester B.E./B.Tech. Degree Examination, June/July 2025 **Aircraft Propulsion**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of thermodynamic data land book is permitted.

Module-1

Sketch and explain a two stroke SI engine. (10 Marks) b. Explain with neat diagram open cycle gas turbine power plant. (10 Marks)

- a. Sketch and explain a pulse jet engine. (10 Marks)
 - b. An aircraft is flying at Mach no. 3 at an altitude where $P_a = 8.5 \text{ kN/m}^2$; $T_a = 220 \text{ K}$. The jet engine powering it has maximum operating temperature as 240 K. considering. Considering the engine an ideal engine compute:
 - i) Thermal efficiency (overall)
 - ii) Propulsive efficiency
 - iii) Specific impulse (specific impulses).

(10 Marks)

Module-2

- a. Explain momentum theory with necessary equations. (10 Marks) (10 Marks)
 - b. Explain advanced blade element theory.

- a. How jet engine thrust can be augmented? Explain. (10 Marks) (10 Marks)
 - b. Discuss performance characteristics of turbojet engine.

- a. Discuss external flow near subsonic inlet. (10 Marks)
 - b. What is starting problem in supersonic inlets? Explain.

OR

- What is meant by underexpanded and overexpnaded nozzles? (10 Marks)
 - b. What is meant by nozzle chocking? Explain.

(10 Marks)

(10 Marks)

Module-4

- 7 a. Sketch and explain the working of centrifugal compressor. Draw the velocity triangles for impeller entry and exit. (10 Marks)
 - b. A centrifugal compressor has an impeller with 21 vanes (radial exit shape), a vaneless diffuser and no inlet guide varies. At entry $P_{01} = 100$ KPa and $T_{01} = 300$ K.
 - i) For operating mass flow of 2.3 kg/s, the impeller tip speed of 500m/s and mechanical efficiency of 96% compute the power required to drive the compressor
 - ii) For an diffuser exit velocity of 100 m/s and total to total efficiency of 82%,. Compute the stagnation and static pressures at diffuser exit. (10 Marks)

OR

- 8 a. Derive an expression for degree of reaction for axial flow compressors with appropriate velocity triangles. (10 Marks)
 - b. An axial flow compressor operates at 288 K with 88% efficiency and produces a pressure ratio of 4.0 for a mass flow of 3 kg/s.
 - i) If the temperature raise per stage must be equal but not more than 25 K calculate the number of stages required and pressure ratio of the first and last stages
 - ii) If the absolute velocity at the entry to the last stage is 165 m/s at an angle of $\alpha_1 = 20^{\circ}$, work done factor = 0.83, velocity diagram is symmetrical and the mean diameter is 0.18 m, compute the rotor speed rps and last stage blade length. (10 Marks)

Module-5

- 9 a. How combustion chambers are classified? Explain. (10 Marks)
 - b. What is flame stabilization in a combustion chamber how it is done in a flame holder?

 (10 Marks)

OR

- 10 a. How a 2D analysis for axial flow turbine is done? Explain. (10 Marks)
 - b. A radial inward flow turbine with rater nozzle ring operates with following parameters : Mass flow = 2 kg/s, P_{01} = 400 KPa, T_{01} = 1100 K P_{02} = 099 P_{01} , nozzle exit angle d_2 = 70°, polytrophic efficiency η_{poly} = 0.85, Rotor maximum diameter D = 0.4m, V_{2r} = E_{a3} , hub/Tip radius ratio at exit = 0.4 T_{03} = 935 K [Use γ = 1.33, R = 287 kJ/kg k, C_p = 1.158 kJ/kg K]. Compute the following :
 - i) Rotor tip speed, rotational speed, and rpm of the rotor
 - ii) Mach number, velocities, rotor width at tip and relative total temperature T_{02} red.

(10 Marks)

* * * *