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ABSTRACT 
In wireless sensor networks and other engineering systems, there are situations wherein some delays occur in 

data transmission and some measurements might be randomly missing. This would cause inaccuracies in 

Kalman filter or its equivalent algorithms, when used for target tracking. In this paper four alternative 

algorithms are studied and the modifications to include the state delay and randomly missing measurements are 

provided. Especially:i) the gain fusion, H-infinity a posteriori, H-infinity risk sensitive filter, and H-infinity 

global filtering algorithms are modified, and evaluated for sensor data fusion scenario using numerical 

simulations carried out in MATLAB; and ii) a nonlinear observer based on the continuous time data fusion filter 

is presented, and asymptotic convergence result is derived using Lyapunov energy functional; these two aspects 

are the novel contribution of this paper.    

Keywords: Data fusion, delayed states, randomly missing measurements,gain fusion filter, H-infinity a 

posteriori filter, risk sensitive filter, H-infinity global fusion filter, observer, Lyapunov function. 

 
I. INTRODUCTION 

The aspects of multi-sensor data fusion 

(MSDF) are very crucial for many civilian and 

military applications: like, target tracking, wireless 

sensor networks, WSN. The point is that one wants to 

ascertain the status and identity of the object under 

observation wherefore the measurements data are 

considered available from more than one sensor. 

Then,data fusion provides more information on the 

status of the object in some appropriate way [1]. 

However, in a communications channel a few or 

many measurements might be missing (from one or 

more sensors); here, it becomes necessary to evaluate 

the performance of these data processing/fusion 

algorithms in presence (and despite) of missing 

measurements; at certain times one might have only 

the random noises present in such channels.  It is very 

important to study the problem of missing 

measurements in the filter/fusion processing cycle 

along with the state delays. This combined aspect has 

not gained much attention in the context of MSDF for 

target tracking, although certain aspects have been 

studied in certain special cases [2-10]. Refs.[2-4] 

considered some  special apects: a) intermittent 

measurements, b) data missing in condition 

monitoring, and c) packet dropouts. A system with 

multiple sensor delay is considered [5], but the 

algoriuthm is very involved.  

The effects of outliers and missing data are 

studied in [6], but the example is for simple time 

series case. The refs. [7,8,10] deal with only missing 

observations, and the state delay is not considered. In  

 

[9], the problem of system delay is studied. The 

measurements might be missing due to: a) a failure of 

one or more senor/s, and/or b) there could be a 

problem is a communication channel, and the received 

data might be only the channel noise. Thus, it is 

important to handle the situation of missing data in 

FFA in a formal way. Also, time delay is encountered 

in several real time systems, due to latency time of a 

few data-channels; and it is a key factor that could 

influence the overall system performance. If such 

aspects of system’s state delay and misisng data are 

not handled suitableyin a target tracking and fusion 

filter, then the track might be lost.  

In this paper, the state delay and radnomly 

missing measuremtns in filtering-cum-fusion 

algorithms (FFAs) are treated; and four existing 

filtering algorithms are modified to incldue thestate 

delay and randomly missing measurements: a) the 

gain fusion or the so called data sharing filter (GFA), 

b) H-infinity a posteriori filter (HIPF), c) H-infinity a 

posteriori risk sensitive filter (HIRF), and d) H-

infinity global fusion filter (HIGF). The performance 

metrics are evaluated using MATLAB based 

implementations of the four algorithms for randomly 

misisng measurements. Also, a nonlinear observer 

based on the continuous time data fusion filter is 

presented, and asymptotic convergence result for the 

observer error dynamics is derived using Lyapunov 

energy functional. The appropriate modifications of 

the four filtering-cum-data fusion algorithms, their 

evaluation and the stability analysis of the nonlinear 
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observer error dynamics that is based on continuous 

time data fusion filterare the contributions of the 

present paper.  

 

II. FILTERING-CUM-FUSION 

ALGORIHTMS 
A nonlineardynamic system with the state delay is 

given as 

( 1) ( ( ), ( 1)) ( )x k f x k x k Gw k    (1)  

The measurement model for each sensor with missing 

data is given as  

( ) ( ) ( )m m m mz k H x k v k       (2)  

In (2), m=1,2 is number of sensors. The process noise 

w(.), and measurement noise v(.) are assumed to be 

white Gaussian stochastic processes with the 

respective covariance matrices as Q and R. 

The quantity 
m is a Bernoulli sequence which takes 

values 0 and 1 randomly; with

{ ( ) 1} ( )m mE k a k   and

{ ( ) 0} 1 ( )m mE k a k    , with ‘a’ as the 

percentage of measurements that arrive to the sensor 

fusion node; this also signifies that a few 

measurements are randomly missing. The constant a 

is assumed to be known or pre-specified.  

 

2.1 Modified gain fusion filtering-cum-fusion 

algorithm (GFA) 

A gain fusion algorithm that is inherently a 

combination of the filtering and data fusion 

processingcapability [11] is modified here to 

incorporate the state delay and randomly missing 

measurements. It considers the local filters and one 

global fusion filter; in each scan, the local filters 

receive the measurements and after processing these, 

communicate the estimated states to the global filter. 

To start with, the time propagation of the global 

estimates is obtained as follows: 

The state estimate is obtained in usual way as  

0 1
ˆ ˆ( 1) ( ) ( 1)f fx k F x k F x k     (3) 

In (3), the Jacobians are given as  

0 1

(.,.) (.,.)
ˆ ˆ, ( ); , ( 1)f ff f

F at x x k F at x x k
x x

 
    

   
The state-error covariance estimate is given as  

0 0 1 1
ˆ ˆ( 1) ( ) ( 1)f f T f T TP k F P k F FP k F GQG    

 
(4) 

Then, the local sensor level (i=1,2,…) filters are reset 

as  

ˆ( 1) ( 1)f

mx k x k     (5)  

ˆ( 1) ( 1)f

mP k P k      (6) 

The measurement updates of the local gains and the 

states is obtained as 

2 11 1
( 1) ( ( 1) )f T f T

m m m m m m m

m m

K P k H H P k H R 
 

 
    
 

(7) 

ˆ( 1) ( 1) ( ( 1))f f

m m m mx k x k K z H x k        (8) 

Then, the global fusion of ‘m’ local estimates is 

obtained as 

ˆ ˆ( 1) ( ( 1) ( 1) ( 1))
m

f i f

i

x k x x k m x k      (9)  

 
(10) 

 

2.2 Modified H-infinity a posteriori 

filteringalgorithm (HIPF) 

This H-infinity filter is based on 

minimization of the H-infinity norm, and it is 

supposed to be a robust algorithm [12]. The basic 

filter is modified to suit the equations (1) and (2).The 

(covariance) state error Gramian (SEG) propagation 

is obtained for each sensor as    

0 0 1 1

1

0 0

1

1 1

( 1) ( ) ( 1)

( )[ ] ( )

( 1)[ ] ( 1)

T T

m m m

m mT T T T

m m m m m m

m

m mT T T

m m m m m m

m

P k F P k F F P k F

H
GQG F P k H L R P k F

L

H
F P k H L R P k F

L











    

 
  

 

 
   

 

(11) 

In (11) the composite measurement covariance matrix 

is obtained as 

2

0
( )[ ]

0

m m T T

m m m m m

m

I H
R P k H L

LI






   
    

   
(12)  

In (12),   is the factor that specifies the bound on the 

energy (variance) gain from the input energies due to 

the disturbances (w(.), and v(.)), and the input error in 

the state initial condition to the output state error 

energy.The HIPF filter gain is obtained as  
2 1( 1) ( ( 1) )T T

m m m m m m mK P k H H P k H I      (13) 

Then, the measurementupdate of the state is given as  

ˆ ( 1) ( ) ( ( 1) ( ))m m m m m mx k x k K z k H x k       (14) 

In (14), the previous state estimate is obtained as 

0 1
ˆ ˆ( ) ( ) ( 1)m m mx k F x k F x k    (15)  

The HIPF as such obtains the individual state and 

covariance estimates for each sensor, hence it requires 

to obtain the fused state and fused covariance 

estimates, and this is obtained by the state vector 

fusion formulae.The fused estimate of the states is 

given as  

 (16) 

The fused estimate of the SEG matrix is given as  
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 (17) 

As can be seen from (16), and (17), that the fusion 

formulae utilize the individual estimates from the two 

sensors’ estimates obtained in (11) and (14).   

 

2.3 Modified H-infinity global filtering-cum-fusion 

algorithm (HIGF) 

This is a decentralized algorithm and is also 

based on H-infinity concept [13], and has the central 

fusion equations. The modified form suitable to 

equations (1) and (2) is given next.The local filters 

are given for each senor as: 

0 1
ˆ ˆ( 1) ( ) ( 1)m m mx k F x k F x k      (18)  

0 0 1 1
ˆ ˆ( 1) ( ) T T T

m m mP k F P k F FP F GQG    (19) 

The SEG update is given as  

1 1

2

0
ˆ ( 1) ( 1) [ ]

0

m mT T

m m m m m

m

I H
P k P k H L

LI






 
   

       
   

(20) 

The local filter gains are given as  

1

2

1 ˆ ˆ( 1) ; ( 1)T T

m m m m m m m m mA I P k L L K A P k H


    

(21) 

ˆ ( 1) ( ) ( ( 1) ( 1))m m m m m mx k x k K z k H x k     

(22) 

The time propagation of the fused states and the SEG 

matrix is given as 

0 1
ˆ ˆ( 1) ( ) ( 1)f f fx k F x k F x k      (23) 

0 0 1 1
ˆ ˆ( 1) ( ) ( 1)f f T f T TP k F P k F FP k F GQG    

(24) 

The measurements update of the fusion states and 

covariance is given as   

1 1 1 1

2
1

1ˆ ˆ( ( 1)) ( ( 1)) { ( 1) ( 1)}
m

f f T

i i

i

m
P k P k P k P k L L



   




       

(25)  

The global gain is obtained as 

2

1 ˆ ( 1)f f TA I P k L L


     

The global/measurement update fused state is given 

as  

 (26) 

In (26) the last term is given as  

0 1
ˆ ˆ( ) ( ) ( 1)i i ix k F x k F x k    (27) 

For this HIGF algorithm, the state vector fusion 

formulae (as needed in the case of HIPF are not 

required. Also, such explicit state vector fusion 

formulae are not required in case of the GFA.    

2.4 Modified H-infinity a posteriori risk sensitive 

filteringalgorithm (HIRF) 

This risk sensitive filter is also based on H-

infinity concept [13]; this feature is dependent on a 

real parameter which determines, whether more or 

less weightage should be given to higher or smaller 

errors in the estimation. The basic filter is modified to 

suit the equations (1) and (2).The SEG matrix 

propagation is obtained for each sensor as    

0 0 1 1

1

0 0

1

1 1

( 1) ( ) ( 1)

( )[ ] ( )

( 1)[ ] ( 1)

T T

m m m

m mT T T T

m m m m m m

m

m mT T T

m m m m m m

m

P k F P k F F P k F

H
GQG F P k H L R P k F

L

H
F P k H L R P k F

L











    

 
  

 

 
   

 

(28)  

In (28) the composite measurement covariance matrix 

is obtained as 

1

0
( )[ ]

0

i m m T T

m m m m m

m

R H
R P k H L

LI




 

   
    

  
(29)  

In (29),   is a risk sensitive parameter [13].The HI 

filter gain is obtained as  
2 1( 1) ( ( 1) )T T

m m m m m m mK P k H H P k H I      (30) 

Then, the measurementupdate of the state is given as  

ˆ ( 1) ( ) ( ( 1) ( ))m m m m m mx k x k K z k H x k      (31) 

In (31), the previous state estimate is obtained as 

0 1
ˆ ˆ( ) ( ) ( 1)m m mx k F x k F x k    (32)  

The HIRF also obtains the individual state and 

covariance estimates for each sensor, hence it 

required to obtain the fused state and fused 

covariance estimates, and this is given by the state 

vector fusion formulae (16), and (17).  

 

III. NONLINEAR OBSERVER BASED ON 

CONTINUOUS TIME DATA FUSION 

FILTER 
Next, a continuous time data fusion filter 

[14] is studied and a nonlinear observer is proposed 

that incorporates randomly missing measurements. 

Let the nonlinear state model be given as (considered 

for say one local senor only): 

( ) ( ( ), ( ))

( ) ( )

x t f x t u t

y t Hx t




  (33) 

In (33), often control input is ignored. The scalar 

quantity   is a Bernoulli sequence; in which case we 

could have written y(k)=  (k)H(k)x(k), without loss 

of any generality. A nonlinear observer for the system 

of (33) can be given as  
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ˆ ˆ ˆ( ) ( ( ), ( )) ( )( ( ) ( ))

ˆ ˆ( ) ( )

x t f x t u t L t y t y t

y t Hx t

  


(34) 

In (34), L(t) is an observer gain matrix of appropriate 

dimension, and is given as  
1( ) ( ) TL t P t H R                                                                                                                 (35)  

The matrix P(t) is obtained as the solution of the 

observer Riccati type differential (ORD) equation 

which is based on the continuous time data fusion 

filter [14]: 
1

1 1 2 1 1 1( )
( ) ( ) ( ) ( ) ( ) ( )T TdP t

P t A t A t P t H R H P y QP t
dt




        

(36) 

One can use 
1( ) ( )Y t P t to obtain the equivalent 

equation which is called matrix Riccati differential 

equation in the literature [1]:  
2 1( ) ( ) ( ) ( ) ( ) ( ) ( )T TY t Y t A t A t Y t H R H Y t QY t     

(37)  

It is seen that the observer gain is obtained from the 

continuous time gain fusion algorithm [14]. The 

required Jacobian for (37) is obtained as 

(.)
( )

ˆ( )

f
A t

x t





(38) 

By subtracting (34) from (33), the following observer 

error dynamics are obtained  

ˆ( ) ( ) ( ) ( ) ( ( ) ( )) (.)

( ) ( ) ( ) ( ) (.)

e t A t e t L t H x t x t

A t e t L t He t

 

 

   

  

(39)    

In (39), new nonlinear function is  

ˆ(.) ( ) ( ) ( , ) ( , )A t e t f x t f x t      (40) 

The form of (40) is obtained by adding and 

subtracting the terms related to the Jacobian in the 

original equations of the error dynamics. In (40), the 

short forms for f and  (.) can be used for simplicity
 

ˆ(.) ( ( ), ( ), )x t x t t 
;

( , ) ( ( ), )f x t f x t t (41) 

It is noted that the state errors are given as 

ˆ( ) ( ) ( )e t x t x t 
                                            

(42)
 

3.1. Asymptotic stability of the nonlinear observer 

error dynamics    

It is necessary to consider the following conditions 

[15,16] for the study of the local asymptotic 

behaviour of the observer error dynamics of (39): 

1. The solution of the matrix RTD equation (36) 

should be bounded    

( )l up I P t p I   (43)  

In (43), ,l up p > 0; are constants (since P(t) is 

theoretically, positive definite and symmetrical 

matrix), and are the lower and upper bounds 

respectively.  

2. The nonlinearity (41) of the error dynamics is 

bounded 
2

1
ˆ(.) ( ) ( )x t x t   (44) 

In (44), the bounding constant is taken greater than 

zero.Then, the nonlinear observer error dynamics (39) 

are locally asymptotically stable, if basically the 

conditions 1 and 2 are satisfied. First, the normalized 

LE functional is considered to establish the 

asymptotic stability of the error dynamics (39)as  

( ) ( ) ( ) ( )TV t e t Y t e t                                                                                                                (45) 

In (45), Y(t) is the normalizing matrix and is 

recognized as an information matrix, and is given as 

Y(t)=P
-1

(t). The matrix P(.) is called Gramian matrix, 

and Y(.) the ‘information matrix’, or theinformation 

Gramian. In such cases,because the deterministic 

observers are considered, the variables x(.), and y(.) 

are called as the generalized ‘random’ variables [12]. 

It is seen that the LE functional is positive definite 

because it is governed by the condition 1, 

theinequality of (43):  

2 21 1
( ) ( ) ( ) ( ) ( )T

u l

e t e t Y t e t e t
p p

                                                                                         (46)  

The time derivative of the LE functional, (45), under 

the constraints governed by error dynamics (39), and 

(35) and (37), should be negative definite. This time 

derivative is obtained, after substituting these 

constraints and simplifying (without any 

approximations, and keeping the track of 

matrix/vector algebra consistency) as 
2 1( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) (.).

T T T

T T T T T

V t e t Y t QY t e t e t H R He t

e t H L Ye t e t Y t LHe t e t Y t



  

  

  

(47) 

The last term is so written, because the matrix Y(.) is 

symmetrical. Now, for (47), it is assumed that
1 21/ ; TR r H H h   , (r and h being positive 

constants) and
2 2( )e t  ; and since, these are 

known and pre-specified quantities, or should be 

finite; one obtains, using the inequality from (44), and 

the observer gain from (35), in terms of respective 

norms: 
2

2 21

2

2 (2 )
( ) { ( ) } ( ) ( )l

u u

q h
V t e t e t e t

p p r

  
   

(48) 

In (48), lq is the smallest (positive) eigenvalue of the 

matrix Q, that is positive definite and symmetric. For

( )e t  =d, the following condition from (48) 

results  
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2
2 21

2

2 (2 )
( ) { } ( ) [ ] ( )l

u u

q h
V t d e t e t

p p r

  
   

(49) 

2

1

( ) { ; 2} ( )
2

l

u

q
V t d e t

p



      (50) 

Since, various constants and bounds (defined earlier) 

appearing in the {.;.} of (49) are positive, then for the 

specified conditions on ‘d’ and  in (50), it is seen 

that the time derivative of the Lyapunov energy 

functional is locally negative definite as in (50). 

Hence, the error dynamics of the nonlinear observer 

for system with randomly missing measurementsare 

locally asymptotically stable. This result establishes 

that the continuous time global data fusion filtering 

algorithm [14] that receives the estimates from the 

local filters, would also be asymptotically stable; 

because the asymptotic convergence result is based 

on the observer error dynamics that use the gain and 

the covariance matrix from the local continuous time 

data fusion filter. This is novel interpretation in this 

paper.  

 
IV. PERFORMANCE EVALUATION OF 

THE FOUR MODIFIED ALGORITHMS 
These algorithms are implemented in 

MATLAB and validated using simulated data. The 

target tracking dynamic system model considered is 

given as 

( 1) ( ) ( )x k F x Gw k     (51)  

The system matrices are  
21 / 2

;
0 1

T T
F G

T

  
    
   

 (52)   

The measurement model for each sensor is given as  

( ) ( ) ( )m m mz k H x k v k     (53)  

For simplicity, the state delay is not considered in 

MATLAB implementation; however, it can be easily 

incorporated. The samping interal is 0.5 sec.; and 

additive random noise processes are considered in 

state and measurements. Two sensor situation is 

considered with dissimilar measurement noise 

variances. The initial conditions for the states are 

x(0)=[200 0.5]. The state x1(.) is a position and the 

state x2(.) is a velocity; and position state is taken as 

observations. The measurement fit error and state 

vector error (%) performance metrics are computed 

as:   PFE(fe)=100*cov(measurements’ error)/cov(true 

or actual measurements). If covariance measure is 

found to be ill-conditioned, then ‘norm’ can be used 

instead. Also, the H-infinity norm is evalauted as 

(38) 

The HI norm is the ratio of the output error (state 

estimate error) energy to the total input energies of 

the disturbances; this includes the error in the state 

initial conditionand all the noise variances. 

The performance evaluation of the three filters is 

carried out for no measurement-data loss, and for 

randomly missing measurements (at the level of 

0.95), for each sensor in turn. The sensors are 

differentiated here in terms of their different 

measurement variances; R1, and R2. The 

performance metrics are given in Table 1; from where 

it can be seen that the GFA algorithm performs better 

(the metrics’ values marked in bold) than the three HI 

based filters; in both the situations, without and with 

measurement loss. This might be due to the fact that 

there is information feedback in GFA from the global 

to the local filters. The performance of the HIPF, 

HIRF (appropriate choice of the risk factor is 

required) and HIGF filtering/fusion algorithms is 

nearly similar in most cases, as these are based on the 

same theory of H-infinity. As a typical case, the 

Figures 1-4 show the filter performance plots for the 

case of HIGF when there is random data loss in 

sensor 1; which shows satisfactory tracking. Also, it 

can be seen that the fusion performance of all the four 

algorithms, is as per the accepted inferences (from the 

literature on data fusion), and is very satisfactory; as 

also can be seen in Figure 3.  

 

V. CONCLUSION 
The suitable modifications in four filtering-

cum-fusion algorithms have been presented to 

incorporate the system state delay in the dynamic 

model, and randomly missing data in the 

measurement equation. The performance has been 
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evaluated using MATLAB based implementations 

when there is measurement data loss in each sensor 

(in turn) and when there is no data loss in either 

sensor. It has been found that the gain fusion GFA 

filtering-cum-fusion algorithm performs better than 

the other three HI based algorithms; however, the 

latter three also exhibit consistent and good 

performance within themselves in the two cases of the 

data loss studied. Anonlinear observer, based on the 

continuous time filtering-cum-fusion algorithm has 

been presented for the system with randomly missing 

measurements, and asymptotic convergence result for 

the error dynamics has been derived based on 

Lyapunov energy functional. This latter result also 

signifies the fact that, if the local filters are 

asymptotically stable, then the global filter that is an 

optimal combination of these local filters would also 

be asymptotically stable. This kind of cross-

utilization of the observer theoretic analysis in 

predicting the stability of the global data fusion 

algorithm is a novel interpretation in this paper. Such 

studies have utilization in applications of the 

observers and the data fusion algorithms in 

communications systems, wireless sensor networks, 

mechanical/aerospaceengineering (target tracking), 

and robotics.     

 

Table 1. Performance metrics for the three modified filters 

 
 

 
Figure 1 Time histories of states (HIGF)               Figure 2 Measurements and residuals (HIGF) 
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Figure 3 Norms of P(.); individual and fused               Figure 4 The state errors with their bounds. 
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