

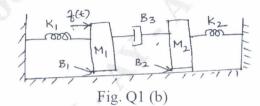
CBCS SCHEME

18MT34

hird Semester B.E./B.Tech. Degree Examination, June/July 2025 Control Systems

Time: 3 hrs.

4LOBE


Max. Marks:100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Distinguish between open loop and closed loop control system. Describe two example for each. (10 Marks)
 - b. For the mechanical system shown in Fig. Q1 (b). Find the transfer function $\frac{X_1(s)}{F(s)}$.

(10 Marks)

OR

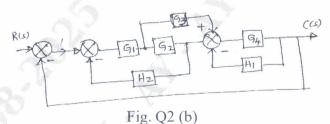

2 a. Refer Fig. Q2(a), draw the mechanical network. Draw the electrical network based on torque-current anology. Give all the relevant performance equations. (10 Marks)

Fig. Q2 (a)

b. Reduce the block diagram to its simple form and hence obtain $\frac{C(s)}{R(s)}$. Refer Fig. Q2 (b).

(10 Marks)

Module-2

a. Find C(S)/R(S) by Mason's gain formula, for the signal flow graph shown in Fig Q3(a).

Fig Q3(a)

(10 Marks)

b. Derive an expression of unit response of a second order system for underdamped case.

(10 Marks)

OR

- 4 a. Define any five time response specifications of under damped second order system.

 Draw necessary response output graph.

 (08 Marks)
 - b. The open loop transfer function of a unity feedback control system is given by $G(s) = \frac{K}{S(ST+1)}.$
 - i) By chart factor the amplifier gain 'K' should be multiplied so that damping ratio is increased from 0.2 to 0.8.
 - ii) By what factor the time constant T should be multiplied so that the damping ratio is reduced from 0.6 to 0.3. (12 Marks)

Module-3

- 5 a. What is stability analysis? State R-H criterion statement and explain. (07 Marks)
 - b. Examine the stability of the system, having C.E. $S^5 + 2S^4 + 3S^3 + 6S^2 + 2S + 1 = 0$. (07 Marks)
 - c. For an unity feedback system, the system is conditionally stable and oscillates with a frequency of 61 rad s⁻¹. Find R and K_{mar} . $G(s) = \frac{9}{s^3 + Rs^2 + 3ks}$ (06 Marks)

OR

- 6 a. Define Bandwidth and derive an expression for bandwidth of a standard second order system. (10 Marks)
 - system. b. The OLTE of an unity FBCS, is $G(s) = \frac{k}{s(s+a)}$,
 - i) Find the value of 'k' and 'a' so that M_r = resonant, peak = 1.04 and W_r = resonant, frequency = 11.55 rad s⁻¹.
 - ii) For the values of 'k' and 'a' found in part (i), calculate the settling time and bandwidth of the system. (10 Marks)

Module-4

- 7 a. Explain the method of calculation the breakaway points and centroid. (06 Marks)
 - b. Sketch the complete root locus of system having, $G(s) H(s) = \frac{K}{s(s+1)(s+2)(s+3)}$. (14 Marks)

OR

- 8 a. Explain the concept of gain margin and phase margin, and how these values help in studying relative stability. (06 Marks)
 - b. For a unity feedback system $G(s) = \frac{800(s+2)}{s^2(s+10)(s+40)}$, sketch the bode plot and comment on stability. (14 Marks)

Module-5

- 9 a. List the advantages of state variable analysis. (04 Marks)
 - b. Define state, state variables, state space and state trajectory. (08 Marks)
 - c. Obtain the transfer function: If $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ $y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$. (08 Marks)

OR

- 10 a. List the properties of state transition matrix and write the transfer function of a state space model in general. (08 Marks)
 - b. Obtain the state transition matrix for $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$. (12 Marks)