

CBCS SCHEME - Make-Up Exam

--	--	--	--	--	--

BEC602

Sixth Semester B.E./B.Tech. Degree Examination, June/July 2025

VLSI Design and Testing

Time: 3 hrs.

Max. Marks: 100

*Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks , L: Bloom's level , C: Course outcomes.*

Module - 1			M	L	C
Q.1	a.	Explain CMOS as Logic inverter.	5	L2	CO1
	b.	Draw the schematic diagram of 2-I/P NOR gate and explain the operation.	5	L3	CO1
	c.	Draw the schematic diagram of following Boolean logic: i) $y = \overline{(ABC + D)E}$ ii) $y = \overline{((A + B) \cdot C) + D}$ iii) $y = \overline{AB + (C + D)}$	10	L3	CO1

OR

Q.2	a.	Discuss about types, symbolic representation and physical structure of MOSFET with neat sketches.	8	L2	CO1
	b.	Construct 2-input EXOR gate using transmission gate logic.	6	L3	CO1
	c.	Write the structural representation of 3-input NOR gate.	6	L3	CO1

Module - 2

Q.3	a.	Derive the equation for drain current of a MOSFET in non-saturated and saturated region of operations.	8	L2	CO2
	b.	Differentiate PMOS and NMOS transistor.	6	L2	CO2
	c.	What is Latch-up in CMOS inverter? Explain how it can be prevented.	6	L2	CO2

OR

Q.4	a.	Explain DC characteristics of CMOS inverter and obtain the relationship for output voltage at different region of DC characteristics.	12	L2	CO2
	b.	Describe the transmission gate logic with neat diagram. Also explain in detail PMOS and NMOS behavior.	8	L2	CO2

Module - 3

Q.5	a.	Describe in steps the P-Well process of CMOS technologies with neat sketches.	10	L2	CO3
	b.	Describe Lambda based SOI design rules by appropriate layer representation with dimensions.	10	L2	CO3

OR

Q.6	a.	Describe the following types of capacitances present in MOS device with relevant equations: i) Parasitic capacitances ii) Diffusion capacitances	10	L2	CO3
	b.	Write short notes on scaling of MOS transistors.	6	L2	CO3
	c.	Explain dynamic power dissipation in CMOS gate.	4	L2	CO3

Module - 4

Q.7	a.	Explain the operations of C ² MOS logic and draw the schematic for the function $y = \overline{(A \cdot B + (D + E) \cdot C)}$ using C ² MOS logic.	8	L3	CO4
	b.	Explain four phase dynamic logic with relevant diagram.	8	L2	CO4
	c.	Draw pseudo NMOS circuit and explain.	4	L2	CO4

OR

Q.8	a.	Draw schematic representation of CMOS inverter and state its all physical layout considerations and draw its standard layout.	8	L3	CO4
	b.	Explain operations of CVSL logic. State its advantages and disadvantages.	6	L2	CO4
	c.	Write short notes on following I/O structures: i) Input pads ii) Output pads	6	L2	CO4

Module - 5

Q.9	a.	Explain the behavior of two-inverter basic Bi-stable element.	10	L2	CO5
	b.	Explain the operation of NOR based SR latch circuit and define related lumped load capacitances at output node.	10	L2	CO5

OR

Q.10	a.	Explain any 4 techniques followed for reduction of complexity of IC design in structured design strategies.	10	L2	CO5
	b.	Write short note on following related automated synthesis: i) Procedural module definition ii) Silicon compiler	10	L2	CO5
