

21EC54

Fifth Semester B.E./B.Tech. Degree Examination, June/July 2025

Electromagnetic Waves

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. What do you mean by scalar and vector fields? Show the difference between two. (06 Marks)
 - b. Given three points in Cartesian coordinate system as A(3, -2, 1), B(-3, -3, 5), C(2, 6, -4). Find: i) The vector from A to C
 - ii) The unit vector from B to A
 - iii) The distance from B to C
 - iv) The vector from A to the midpoint of the straight line joining B to C. (08 Marks)
 - c. State Coulomb's law of force between any two point charges and also in vector form.

(06 Marks)

OR

- 2 a. A charge $Q_2 = 12$ inc is located in free space at P_2 (-0.03, 0.01, 0.04)m. Find the force on Q_2 due to Q_1 where $Q_1 = 110\mu C$ at $P_1(0.03, 0.08, -0.02)m$. (06 Marks)
 - b. A volume charge density is expressed as $\rho_v = 10z^2 x \sin \pi y$. Find the total charge inside the volume $(-1 \le x \le 2)$, $(0 \le y \le 1)$, $(3 \le z \le 3.6)$.
 - c. Derive the expression for electric field intensity due to infinite line charge. (08 Marks)

Module-2

a. State and prove the Gauss's law.

- (06 Marks)
- b. Consider a coaxial cable with inner radius 'a' and outer radius 'b'. Derive the expression for flux density (\overline{D}) for the region a < r < b using Gauss's law. (08 Marks)
- c. The flux density $\overline{D} = r/3 \ \overline{a}_r \ nc/m^2$ is in the free space:
 - i) Fine \overline{E} at r = 0.2m
 - ii) Find the electric flux leaving the sphere of r = 0.2m.
 - iii) Find the total charge within the sphere of r = 03.m.

(06 Marks)

OR

- 4 a. Derive Maxwell first equation as applied to the electro statics, using Gauss's law. State the divergence theorem using Maxwell's first equation. (06 Marks)
 - b. Evaluate the both sides of divergence theorem for the field $\overline{D} = 2xy \ \overline{a}_x + x^2 \ \overline{a}_y \ c/m^2$ and rectangular parallel piped formed by the planes x = 0 and x = 1, y = 0 and y = 2 and z = 0 and z = 3.
 - c. Derive the expression for the work done in moving a point charge in an electric field.

 (06 Marks)

Module-3

- 5 a. Determine whether or not the following potential fields satisfy the Laplace's equation: i) $V = x^2 - y^2 + z^2$ ii) $V = r \cos \phi + z$ iii) $V = r \cos \phi + \phi$. (06 Marks)
 - b. Using the Laplace's equation, derive an expression for capacitance per unit length of a coaxial cable using the following boundary conditions. $V = V_0$ at r = a and V = 0 at r = b, b > a. (08 Marks)
 - c. State and explain Biot Savart law applicable to magnetic field. (06 Marks)

OR

- 6 a. Derive the expression for a curl, applying Ampere's circuital law to an incremental surface element. (08 Marks)
 - b. State and prove the Stoke's theorem. (06 Marks)
 - c. What is scalar magnetic potential? Explain Laplace equations for scalar magnetic potential.
 (06 Marks)

Module-4

- 7 a. Define and explain the terms magnetic flux and magnetic flux density. Obtain the magnetic flux using magnetic flux density in coaxial cable. (08 Marks)
 - b. In certain region, the magnetic flux density in a magnetic material with $\chi_m=6$ is given and $\overline{B}=0.005y^2$ \overline{a}_x T. At y=0.4m, find the magnitude of: i) \overline{J} ii) \overline{J}_b iii) \overline{J}_T . (06 Marks)
 - c. Discuss the boundary conditions for magnetic field based on the normal component of the \overline{B} and \overline{H} . (06 Marks)

OR

- 8 a. Derive an expression for the magnetic force between differential current elements. (06 Marks)
 - b. A conductor of length 2.5m in z=0 and x=0 carries a current of 12A in $-\overline{a}_y$ direction. Calculate the uniform flux in the region, if the force on the conductor is 12×10^{-2} N in the direction specified by $\left[\frac{-\overline{a}_x + \overline{a}_z}{\sqrt{2}}\right]$. (08 Marks)
 - c. State and explain Faraday's law of electromagnetic induction in integral and point form.
 (06 Marks)

Module-5

- 9 a. Write the Maxwell's equations in the integral form and explain the physical significance.
 - b. Two parallel conducting plates of area 0.05m^2 are separated by 2mm of lossy, dielectric for which $\epsilon_r = 8.3$ and $\sigma = 8 \times 10^{-4}$ S/m. given an applied voltage $V = 10 \sin 10^7$ t V. Find total r.m.s current.
 - c. Do the fields $E = E_m \sin x \sin t \ \overline{a}_y$ and $\overline{H} = \frac{E_m}{\mu o} \cos x \cos t \ \overline{a}_z$ satisfy the Maxwell's equations. (06 Marks)

OR

- 10 a. Write short notes on Retarded potential. (06 Marks)
 - b. Given $E = E_0 z^2 e^{-t} \overline{a}_x$ in free space, determine if there exist a magnetic field such that both Faraday's law and Ampere's circuital law are satisfied simultaneously. (08 Marks)
 - c. Discuss the propagation of uniform plane wave in good conductor. (06 Marks)