

Fifth Semester B.E./B.Tech. Degree Examination, June/July 2025
Digital Communication

Max. Marks: 100

Note: 1. Answer any **FIVE** full questions, choosing **ONE** full question from each module.
 2. M : Marks, L: Bloom's level, C: Course outcomes.

Module - 1			M	L	C
Q.1	a.	Define Hilbert transform. Mention its applications. Show that a signal $g(t)$ and its Hilbert transform are orthogonal over the entire time interval $(-\infty, \infty)$.	6	L2	CO1
	b.	Using Gram-Schmidt orthogonalization procedure calculate a set orthonormal basis functions to represent the three signals $S_1(t)$, $S_2(t)$ and $S_3(t)$ shown in Fig.Q1(b). Also express each of these signals in terms of the set of basis functions.	8	L3	CO1
		<p align="center">Fig.Q1(b)</p>			
	c.	Describe the correlation receiver with the neat diagrams and the maximum - likelihood decoder.	6	L2	CO1
OR					
Q.2	a.	Express band pass signal $s(t)$ in canonical form. Represent the in phase and quadrature components of the bandpass signal $s(t)$.	6	L2	CO1
	b.	Determine pre-envelope and complex - envelope of the signal shown in Fig.Q2(b).	6	L3	CO1
		<p align="center">Fig.Q2(b)</p>			
	c.	Discuss the operation of matched filter receiver with necessary diagram.	8	L2	CO1

Module - 2

Q.3	a.	Describe the generation and reception of BPSK signal with a necessary equation and constellation diagram.	10	L3	CO2
	b.	The binary sequence 1100100010 is applied to the DPSK transmitter : (i) Sketch the resulting waveform at the transmitter output (ii) Applying this waveform to the DPSK receiver show that in the absence of noise, the original binary sequence is reconstructed at the receiver output.	6	L2	CO2
	c.	Explain M-ary QAM. Mention its advantage over M-ary PSK system. Obtain the constellation of QAM for M = 4 and draw signal space diagram.	4	L2	CO2

OR

Q.4	a.	Derive the expression for error probability of BFSK using coherent detection.	8	L3	CO2
	b.	Binary data are transmitted over a microwave link at the rate of 10^6 BPS and PSD of noise at the receiver is 10^{-10} watts/Hz. Compute the average carrier power required to maintain an average probability of error $P_e \leq 10^{-4}$ for the following cases : (i) Binary PSK using coherent detection (ii) DPSK Note : take $\text{erfc}(2.63) = 2 \times 10^{-4}$ $Q(3.7) = 10^{-4}$	6	L2	CO2
	c.	With a neat block diagram outline the generation and coherent detection of QPSK signal.	6	L2	CO2

Module - 3

Q.5	a.	Briefly discuss entropy and information rate. Derive the expression of average information content of a zero memory source.	6	L2	CO3
	b.	An international Morse code uses a sequence of symbols of dots and dashes to transmit letters of English alphabet. The dash is represented by a current pulse of duration 2 msec and dot by a duration of 1 msec. The probability of dash is half that of dot. Consider 1 msec duration of gap is given in between symbols. Calculate : (i) Self information of a dot and a dash (ii) An average information content of a dot-dash code (iii) Average rate of information.	6	L3	CO3
	c.	An information source produces a sequence of independent symbols having the following probabilities. $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$, $P = \left\{ \frac{1}{3}, \frac{1}{27}, \frac{1}{3}, \frac{1}{9}, \frac{1}{9}, \frac{1}{27}, \frac{1}{27} \right\}$ Construct the binary and ternary code using Huffman encoding procedure. Find its efficiency and redundancy.	8	L3	CO3