

18EC33

(06 Marks)

d Semester B.E./B.Tech. Degree Examination, June/July 2025 **Electronics Devices**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain different types of bonding forces in solids.
 - b. Consider a semiconductor bar with w = 0.1 mm, $t = 10 \mu m$ and L = 5 mm for $B_z = 10 kg$ in the direction shown in Fig.Q1(b) and a current of 1 mA. $V_{AB} = -2mV$, and $V_{CD} = 100mV$. Find the type of semi-conductor carriers and mobility of the majority carriers. Given $1 \text{ kg} = 10^{-5} \text{ wb/cm}^2$.

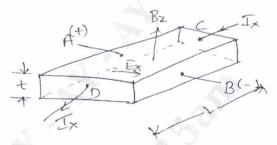


Fig.Q1(b)

(06 Marks)

What are intrinsic and extrinsic materials? Explain briefly by taking suitable example. (08 Marks)

- Explain classification of semiconductor, insulator and metals using energy band diagram.
 - b. A silicon is doped with 10¹⁷ Arsenic atoms/cm³. What is the equilibrium hole concentration P₀ at 300°K? Sketch the resulting band diagram showing where is E_F relative to E_i. Assume $n_{i}^{2} = 2.25 \times 10^{20}$.
 - c. Derive an expression for conductivity and mobility from random thermal motion or electron in solid. (08 Marks)

Module-2

Describe the structure and operation of solar cell. Indicate the significance of fill factor. 3

b. With a neat diagram, describe in detail avalanche breakdown and derive an approximate analysis of avalanche multiplication. (10 Marks)

OR

- Discuss the reverse bias p-n junction indicating the minority carrier distribution and variation of quasifermi levels. (10 Marks)
 - b. Derive an expression for current and voltage for an illuminated junction of photodiode and discuss the operation in various quadrants in I-V characteristic. (10 Marks)

Module-3

- a. Describe the effect of excess hole distribution in cutoff and saturation regime with neat 5 (10 Marks)
 - b. Explain the switching effect in a common-emitter transistor circuit and specification for switching transistor with neat diagram. (10 Marks)

OR

- Describe the schematic representation of p-n-p transistor and summarize the hole and electron flow with proper biasing. (10 Marks)
 - b. Derive the Ebers-Moll equations and represent the coupled-diode equivalent circuit.

(10 Marks)

Module-4

- a. Explain the ideal capacitance voltage characteristics of an MOS capacitor with p-type substrate. (06 Marks)
 - b. Illustrate the structure and operation of pn-JFET by varying V_{GS} and V_{DS} independently.

c. List the different types of MOS structures and its symbols.

(06 Marks)

OR

- Explain the operation of MOS capacitor using energy band diagram for p-type substrate when:
 - Negative gate bias
 - ii) Moderate positive gate bias
 - iii) Large positive gate bias.

(08 Marks) (06 Marks)

- b. Distinguish between JFET and MOSFET.
- c. Describe small signal equivalent circuit of a n-channel pn JFET, with suitable diagram.

(06 Marks)

- a. List out the different types of IC's along with the advantages and disadvantages and applications of IC's.
 - b. Describe with neat schematic diagram, Rapid Thermal Processor (RTP) and typical timetemperature profile. (10 Marks)

OR

a. Explain the fabrication of CMOS twin well process.

(10 Marks)

b. Describe with neat schematic diagram, optical stepper.

(10 Marks)