GBGS SCHEME

USN BMATM201

Second Semester B.E./B.Tech. Degree Examination, June/July 2025 Mathematics-II for ME Stream

Time: 3 hrs

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. VTU Formula Hand Book is permitted

T- "THE MEST SHEET	CALDER DE				
	,	Module – 1	M	L	C
Q.1	a.	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^{2} + y^{2}) dy dx$.	7	L3	CO1
	b.	Evaluate $\iint_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz.$	7	L3	CO1
	c.	Show that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	6	L2	CO1
		OR			
Q.2	a.	Evaluate by changing into polar coordinates. $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy.$	7	L3	CO1
	b.	Find the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, by double integration.	7	L2	CO1
	c.	Write a modern mathematical tool program to find the volume of the tetrahedron bounded by the planes $x = 0$, $y = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	6	L3	CO5
		Module – 2	,	,	
Q.3	a.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at $(2, -1, 2)$.	7	L2	CO2
	b.	Define a irrotational vector. Find the constants a, b and c such that the vector $\vec{F} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$ is irrotational.	7	L2	CO2
,	c.	If $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$ find $div \vec{F}$ and $curl \vec{F}$.	6	L2	CO2
		OR			
Q.4	a.	Find the workdone by a force $\vec{F} = (2y - x^2)\hat{i} + 6yz\hat{j} - 8xz^2\hat{k}$ from the point $(0, 0, 0)$ to the point $(1, 1, 1)$ along the straight line joining these points.	7	L2	CO2
	b.	Using Green's theorem, evaluate $\int_{C} (xy + y^2)dx + x^2dy$, where C is the closed curve of the region bounded by $y = x$ and $y = x^2$.	7	L3	CO2

	c.	Write the modern mathematical tool program to find the divergence of the	6	L3	CO5
		vector field $\vec{F} = x^2yz \ \hat{i} + y^2zx \ \hat{j} + z^2xy \ \hat{k}$.			
		Module – 3			
Q.5	a.	From the PDE by eliminating the arbitrary function from $f(x + y + z, x^2 + y^2 z^2) = 0$.	7	L2	CO3
	b.	Solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that when $x = 0$, $z = 0$ and $\frac{\partial z}{\partial x} = a \sin y$.	7	L3	CO3
	c.	Derive one dimensional heat equation in the standard form as $\frac{\partial u}{\partial t} = C^2 \cdot \frac{\partial^2 u}{\partial x^2}.$	6	L2	CO3
		OR			a
Q.6	a.	Form the PDE by eliminating the arbitrary constants 'a' and 'b' from $(x-a)^2 + (y-b)^2 + z^2 = c^2$.	7	L2	CO3
	b.	Solve $\frac{\partial^2 z}{\partial x \partial y}$ = Sinx Siny for which $\frac{\partial z}{\partial y}$ = -2 Siny. when x = 0 and z = 0, if 'y' is an odd multiple of $\pi/2$.	7	L3	CO3
	c.	Solve: $x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = z$, using Lagrange's multipliers.	6	L3	CO3
		Module – 4	1		1
Q.7	a.	Find the real root of the equation $xe^x - 2 = 0$ correct to three decimal places using the Newton – Rephson method.	7	L3	CO4
	b.	Using Newton's forward interpolation formula, find y at $x = 5$. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	CO4
	c.	Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ by taking 7 ordinates using the Trapezoidal rule.	6	L3	CO4
		OR	1	1	
Q.8	a.	Compute the real root of the equation $x \log_{10}^{x} -1.2 = 0$ lies between 2 and 3	7	L2	CO4
		by the Regula Falsi method. Carry out four approximations.			4001
	b.	Using Newton's divided difference formula, evaluate $f(4)$ from the following table :	7	L2	CO4
	c.	Compute the value of y when $x = 3$. Using Lagrange's interpolation formula given	6	L3	.CO4

Q.9	a.		7	L3	CO4
Q.J	а.	the third degree given that $\frac{dy}{dx} = x^2 + y^2$ and $y(0) = 1$.	,	LS	004
		dx			
	b.	Apply the Runge – Kutta method of fourth order to find an approximate	7	L3	CO4
		value of y at x = 0.2, given that $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0) = 1, and h = 0.2.			
	c.	Given that $\frac{dy}{dx} = x - y^2$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$,	6	L3	CO4
		y(0.6) = 0.1762. Compute y at $x = 0.8$ by applying Milne's method.			
20		OR			>
Q.10	a.	Using the modified Euler's method, find y(0.1) given that $\frac{dy}{dx} = x^2 + y$ and	7	L3	CO4
		y(0) = 1 take step size $h = 0.05$ and perform two approximations in each			
		stage.			
	b.	Using the Runge-Kutta method of fourth order, find y(0.2) given that	7	L3	CO4
		$\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1, \text{ taking } h = 0.2.$			
		dx y+x			
	c.	Using modern mathematical tools write a program to find y when $x = 2$	6	L3	COS
		given that $\frac{dy}{dx} = 1 + \frac{y}{x}$, $y(1) = 2$, taking $h = 0.2$ by Runge – Kutta method of			
		4 th order.			

ů.					
			*		
		3 of 3			