

CBCS SCHEME

18MAT11

First Semester B.E./B.Tech. Degree Examination, June/July 2025 Calculus and Linear Algebra

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Show that the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ intersect orthogonally. (06 Marks)
 - b. Find the radius of curvature of the curve $y = a \log \sec \left(\frac{x}{a}\right)$ at any point (x, y). (06 Marks)
 - c. Show that the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x-2a)^3$. (08 Marks)

OR

- 2 a. With usual notation, prove that $\tan \phi = r \frac{d\theta}{dr}$. (06 Marks)
 - b. Find the pedal equation of the curve $r = ac^{\theta \cot \alpha}$. (06 Marks)
 - c. Find the radius of curvature for the curve $r = a(1 + \cos \theta)$. (08 Marks)

Module-2

- 3 a. Using Maclaurin's series, prove that $\sqrt{1 + \sin 2x} = 1 + x \frac{x^2}{2} \frac{x^3}{6} + \frac{x^4}{24} + \dots$ (08 Marks)
 - b. Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$. (06 Marks)
 - c. Examine the function $f(x,y) = x^3 + y^3 3x 12y + 20$ for its extreme values. (06 Marks)

OR

- 4 a. If U = f(x y, y z, z x), prove that $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} = 0$. (06 Marks)
 - b. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (07 Marks)
 - c. A rectangular box, open at the top, is to have a volume of 32 cubic ft. Find the dimension of the box requiring least material for its construction. (07 Marks)

Module-3

- 5 a. Evaluate $\int_{0}^{1} \int_{y^2}^{1-x} \int_{0}^{1-x} x dz dx dy$. (07 Marks)
 - b. Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, above x-axis. (07 Marks)
 - c. With usual notations, prove that $\beta(m,n) = \frac{\Gamma m \Gamma n}{m+n}$. (06 Marks)

OR

- 6 a. Evaluate $\int_{0}^{a} \int_{x}^{a} \frac{x}{x^2 + y^2} dx dy$ by changing the order of integration. (07 Marks)
 - b. Evaluate $\iint_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates. (07 Marks)
 - c. Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \times \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi.$ (06 Marks)

- 7 a. Solve $\frac{dy}{dx} + y \tan x = y^2 \sec x$. (06 Marks)
 - b. Find the orthogonal trajectories of the family $r^n \cos n\theta = a^n$. (07 Marks)
 - c. Solve the equation (px y)(py + x) = 2p by reducing into Clairaut's form, taking the substitution $\hat{X} = x^2$, $\hat{Y} = y^2$. (07 Marks)

OR

- If the temperature of the air is 30°C and a metal ball cools from 100°C to 70°C in 15 minutes, find how long will it take for the metal ball to reach a temperature of 40°C. (06 Marks)
 - Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is the parameter. (07 Marks)
 - c. Solve $xy\left(\frac{dy}{dx}\right)^2 (x^2 + y^2)\frac{dy}{dx} + xy = 0$. (07 Marks)

- a. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing to row-reduced echelon form.
 - b. Apply Gauss-elimination method to solve the x+4y-z=-5, x+y-6z=-12, 3x - y - z = 4.
 - Find numerically largest eigen value and corresponding eigen vector of $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ by

Rayleigh's power method. Take initial eigen vector $[1,0,0]^T$. Carry out five iterations.

(07 Marks)

- Test for consistency and solve the system of equations, x+y+z=6, x-y+2z=5, 3x + y + z = 8. (06 Marks)
 - b. Solve the system of equations by Gauss-Seidel method x + y + 54z = 110, 27x + 6y z = 85, 6x + 15y + 2z = 72. Carryout three iterations.
 - c. Diagonalize the matrix $\begin{vmatrix} -1 & 3 \\ -2 & 4 \end{vmatrix}$. (07 Marks)