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Abstract 

We present a nonlinear observer for continuous time dynamic 

system with state delay, and randomly missing measurements. 

Using the Lyapunov energy (LE) functional, we derive 

sufficient conditions for the local asymptotic stability for the 

observer state error equations. The observer performance 

without and with missing measurements is evaluated by 

simulations implemented in MATLAB. The results validate 

the theoretical asymptotic behaviour of the proposed nonlinear 

observer for the system with time delay and randomly missing 

measurements. We, then extend the nonlinear observer for 

nonlinear system with state delay and randomly missing 

measurements in the measurement data level and state vector 

fusion modes for multisensory data fusion situation. We also, 

ascertain that the state vector fusion formula for these 

observers is similar to that for the Kalman/extended Kalman 

filter. We ascertain that the derived theoretical result 

automatically extends to these nonlinear observers due to their 

non-complicated structures. 

Keywords: Delayed states, randomly missing data, nonlinear 

observers, asymptotic results, measurement and state vector 

level fusion. 

 

INTRODUCTION 

In control and estimation-cum-filtering theory, the objective 

of an observer is to reconstruct the state of a dynamic system 

using the knowledge of the system input/output data/signals. 

For linear systems, the system states are generally estimated 

using the Luenberger observer or Kalman filter. For a 

nonlinear system one uses an extended Luenberger observer 

or extended Kalman filter [1].However, there are not many 

results for state estimation of nonlinear systems with delayed 

states and randomly missing measurements. There are real life 

dynamic systems like transportation, chemical reactors, 

biological systems, computer networks, and communication 

systems, including wireless sensor networks (WSN), wherein 

state delays and/or missing measurements could occur; e.g. 

sometimes, in a data-communications channel a few or many 

measurements might be missing (from one or more sensors). 

In such cases, it becomes important to study and evaluate the 

performance of the data processing algorithms in presence 

(and despite) of missing measurements. That is, in the absence 

of certain signals/data during certain time intervals, we would 

have only the random (measurement) noises present for these 

channels.  

This joint/combined/synergy aspect has not gained much 

attention in the context of nonlinear systems, though some 

work has been done in certain special cases [2-10]. In [2-4] 

some special cases have been considered: a) availability of 

intermittent observations, b) missing data in online condition 

monitoring, and c) some packet dropouts. A system with 

multiple sensor-delay is considered in [5], but the algorithm 

turns out to be quite involved. The problem of 

measurement/data outliers and missing data is considered in 

[6], however, the illustration has been given only for simple 

time-series case. Although, the refs. [7,8,10] deal with missing 

observations, however, the aspect of state delay is not treated. 

In [9] only the problem with system delay is considered. In 

[11] an EKF-based nonlinear observer has been studied for the 

system with time-delays and some asymptotic results [11, 12] 

have been presented, but the case of missing measurements 

was not studied.   

In the present paper, we consider the state delay as well as 

randomly missing measurements/data in a nonlinear observer 

in a synergistic manner. Some data may be missing due to: a) 

a failure of a senor, and/or b) there might be a problem in one 

or more communication channel/s; in such cases, the received 

data might be only the noise and the real signal is missing. So, 

it is very important to handle the situation of missing data in a 

nonlinear observer in some optimal way. Also, the time delay 

could be encountered in some real-time systems, due to 

latency time of certain channels. Thus, the time delay is a key 

factor that influences the overall system stability and 

performance; and if these aspects of system’s state delay and 

missing data are not handled appropriately in a tracking 

algorithm, then we might lose the track.  
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Hence, we propose a nonlinear observer that would handle 

state delay as well as randomly missing measurements; and 

also derive the asymptotic condition for the observer error 

dynamics. The performance is illustrated with implementation 

in MATAB. We also, propose nonlinear observer/s for 

nonlinear continuous time system with state delay and 

randomly missing measurements in the measurement data 

level and state vector level fusion modes (MLF, SVF). We 

also, ascertain that a state vector fusion formula for this 

observer is similar to that for the Kalman/extended Kalman 

filter. Many of the presented results and observations 

(inferences) here, are novel in the area of observer theory and 

multisensory data fusion. 

 

Nonlinear system and observer error dynamics    

Let the nonlinear delayed state model with randomly missing 

measurements be given as  

( ) ( ( ), ( ), ( ))

( ) ( )

x t f x t x t u t
y t Hx t





 


 (1) 

In (1), often the control input is ignored. Also, the scalar 

quantity   is a Bernoulli sequence; in which case we could 

have written y(k)= (k)H(k)x(k), without loss of any 

generality, and this sequence takes values 0 and 1 randomly; 

thus, we have { ( ) 1} ( )E k b k   and { ( ) 0} 1 ( )E k b k    , 

with b as the percentage of measurements that arrive to/from 

the sensor node, and E{.} is the mathematical expectation. 

This, also signifies that some measurement data are randomly 

missing. The constant b is assumed to be known and pre-

specified. The initial conditions for the states and delayed 

state are assumed to be appropriately specified [11]. The 

variables in (1), have usual appropriate dimensions, and 

presently we consider that these belong to real 2D space (say 

H2 vector spaces). It is also assumed that the nonlinear 

function f is continuously differentiable. Then, we propose a 

nonlinear observer for the system of (1) as  

ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ( )) ( )( ( ) ( ))

ˆ ˆ( ) ( )

x t f x t x t u t L t y t y t
y t Hx t





   



                     (2) 

In (2), L(t) is an observer gain matrix of appropriate 

dimension, and is given as  

1( ) ( ) TL t P t H R  (3) 

In the case of the observer of (2), R is some positive definite 

matrix, and P(t) is obtained as the solution of the observer 

Riccati differential (ORD) equation  

2 1

0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t P t A t A t P t b P t H R HP t S A t A t          (4) 

We see that the observer gain is obtained from the EKF 

[11,12]. The required Jacobians for (4) are obtained as 

0 1

(.) (.)
( ) ; ( )

ˆ ˆ( ) ( )

f fA t A t
x t x t 

 
 
  

                                   (5)  

In (4), we have additional term arising due to the state delay 

(5). By subtracting (2) from (1) we obtain the following error 

dynamics  

0 1

0 1

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) (.)

( ) ( ) ( ) ( ) ( ) ( ) (.)

e t A t e t A t e t L t Hb x t x t
A t e t A t e t bL t He t

 

 

     

    
    (6) 

In (6), we have the new nonlinear function as  

0 1
ˆ(.) ( ) ( ) ( ) ( ) ( , , ) ( , , )A t e t A t e t f x t t f x t t                  (7) 

The form of (7) is obtained by adding and subtracting the 

terms related to the Jacobians in the original equations of the 

error dynamics. In (7) the full forms for f and  (.) are given 

for clarity ˆ ˆ(.) ( ( ), ( ), ( ), ( ))x t x t x t x t     
               (8) 

( , , ) ( ( ), ( ))

ˆ ˆ ˆ( , , ) ( ( ), ( ))

f x t t f x t x t
f x t t f x t x t

 

 

  

  
 

However, for simplicity we will use very compact form of by 

avoiding the arguments since, these would be implied any 

way from its defining form (1), and (2), and we have also 

omitted u(t). We note that the state errors are given as 

ˆ ˆ( ) ( ) ( ); ( ) ( ) ( )e t x t x t e t x t x t                (9) 

 

Asymptotic stability of observer error dynamics    

We consider the following conditions [11,12] for the local 

asymptotic behavior of the observer error dynamics of (6) 

1.  The solution of the ORD equation (4) is bounded  

( )l up I P t p I                                                             (10)  

with ,l up p > 0 as positive constants (since P(t) is also 

theoretically, positive definite and symmetrical matrix), and 

are the lower and upper bounds respectively; and I is the 

identity matrix.  

2.  The nonlinearity (6)-(8) of the error dynamics is bounded 

2 2

1 2
ˆ ˆ(.) ( ) ( ) ( ) ( )x t x t x t x t               (11) 

with the bounding constants equal to or greater than zero.  

Then, the nonlinear observer error dynamics (6) are locally 

asymptotically stable, if the conditions 1 and 2 are satisfied.  

First, we consider the following normalized LE functional to 

establish the asymptotic stability of the error dynamics (6)  

( ) ( ) ( ) ( )TV t e t Y t e t                                      (12) 

In (12), Y(t) is the normalizing/weighting matrix and can be 

recognized as an information matrix, and is given as Y(t)=P-
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1(t).In the case of Kalman filter, P(t) is considered as the 

covariance matrix of the state error-vector. Here, also it can be 

considered so, however, since we are not dealing with 

stochastic noise processes, we can call this matrix as the 

Gramian matrix, and still retain the name ‘information matrix’ 

for the inverse of matrix P(t). In such a case the variables x(.), 

and y(.) can be considered as the generalized ‘random’ 

variables. We can see that LE functional is positive definite 

because it is governed by the condition 1, the inequality of 

(10) as follows   

2 21 1
( ) ( ) ( ) ( ) ( )T

u l

e t e t Y t e t e t
p p

                          (13) 

The idea in obtaining the asymptotic result is that the time 

derivative of the LE functional, (12), under the constraints 

governed by error dynamics (6), and (3) and (4), should be 

negative definite. Hence, we obtain this time derivative as  

0 0

1

1

( ) ( ) ( ) ( ) ( ){ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) } ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ) (.).

T T T

T T T T

T

T

V t e t Y t e t e t A t Y t Y t A t

bH L t Y t bY t L t H e t e t A t Y t e t
e t Y t A t e t

e t Y t







  

   

 



  (15) 

Next, we substitute for ( ) ( ) ( ) ( )Y t Y t P t Y t  , and (3) and 

(4) in (15) to obtain 

1 1 1 1

2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) (.).

T T T T T

T T T

T T T

V t e t Y t A t A t Y t e t e t A t Y t e t e t Y t A t e t
e t e t e t e t e t Y t SY t e t
b e t H R He t e t Y t

 

   



     

      

 

 (16) 

In obtaining (16), because of the substitution of (3), and (4), 

several common terms cancel out. In (16), we have added and 

subtracted the term ( ) ( )Te t e t   , and thus due to the 

structure of the first four terms of (16), we can combine these 

in the compact form 
2

1 ( ) ( ) ( ) ( )TA t Y t e t e t    , and by 

using this in (16) we obtain 

2

1

2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 2 ( ) ( ) (.).

T T

T T T T

V t A t Y t e t e t e t Y t SY t e t

b e t H R He t e t e t e t Y t



  

    

    

(17) 

We can then get the following equivalent inequality by 

dropping the first compact term (this does not affect the 

inequality) from (17) 

2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) (.).T T T T TV t e t Y t SY t e t b e t H R He t e t e t e t Y t           (18) 

In (18), we assume that 1 21/ ; TR r H H h   , (r and h being 

positive constants) and 2 2( )e t   and since, these are known 

and pre-specified quantities, or should be finite, we obtain 

2 2 2
2

( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) (.).T Th bV t e t Y t SY t e t e t e t Y t
r


        (19) 

Then, using the inequality from (11), we obtain 

2 2
2 2 22

21
( ) ( ) ( ) ( ) ( ) 2 ( ) ( ){ ( ) ( } (T T h bV t e t Y t SY t e t e t Y t e t e t e t

r
             (20) 

2 2
2 2 221 2( ) ( ) ( ) ( ) ( ) 2{ ( ) ( ) ( ) ( } (T

u u

h bV t e t Y t SY t e t e t e t e t e t e t
p p r
 

         

2 2
2 2 2 221 2

2
( ) ( ) 2{ ( ) ( ) ( ) ( } (l

u u u

s h bV t e t e t e t e t e t e t
p p p r

 
           (21) 

2 2
2 21 2

2

2 2
( ) { ( ) } ( ) { 1 ( ) } (l

u u u

s h bV t e t e t e t e t
p p r p

 
        (22) 

In (21), ls is the smallest (positive) eigenvalue of the matrix 

S, that is positive definite. For ( )e t  , we have the 

following condition from (22) 

2 2
2 21 2

2

2 2
( ) { } ( ) { 1 } (l

u u u

s h bV t e t e t
p p r p

 
         (23) 

2 2
2

1 2

( )
( ) { ; } ( )

2 2

l u

u

s h b r pV t e t
p r 


   (24) 

Since, all the constants and bounds appearing in the {.;.} in 

(24) are positive, and also, we regard the bounding constants 

in (11), as positive, (in the case that these are really equal to 

zero, we can assign them slightly positive values, without loss 

of any generality, since these constants are arbitrary, and we 

can always assure that 
2 2h b r ), we see that the time 

derivative of the Lyapunov energy functional is bounded from 

above as in (24). Since, the Lyapunov energy functional is 

positive definite as in (12), and its time derivative is locally 

negative definite as in (24), the observer error dynamics of the 

newly proposed nonlinear observer for system with state 

delay, and randomly missing measurements/data is locally 

asymptotically stable. 

 

Nonlinear observer for sensor data fusion 

Multisensory data fusion is an evolving technology at 

software/algorithms and hardware levels and is defined as: an 

act, that could be additive, multiplicative, operative, and/or 

logical by which a) the quantitative information in the sense 

of Fisher’s information matrix is enhanced by 

fusing/combining data from more than one sensor or source, 

and/or b) the prediction accuracy is enhanced, compared to 

the usage of a single sensor-data or source [13]. 

 

Observer for the measurements/data level fusion 

Here, we consider the delayed state model, and missing 

measurements/data in the measurement data level fusion. The 

state model is the same as (1), and the measurement model for 

the two-sensor scheme is given as  

( ) ( ( ), ( ), ( ))

( ) ( )i i i

x t f x t x t u t
y t H x t





 


  (25) 
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In (25), yi(t), i=1,2 is the output from the first (i=1), and the 

second (i=2) sensors.  Here also, the scalar quantity 
i  is a 

Bernoulli sequence; in which case we could have written 

y(k)=
i (k)H(k)x(k), without loss of any generality, and this 

sequence takes values 0 and 1 randomly; thus, we have 

{ ( ) 1} ( )i iE k b k   and { ( ) 0} 1 ( )i iE k b k    , with bi as 

the percentage of measurements that arrive to/from the sensor 

node. This, also signifies that some measurement data are 

randomly missing. The constant bi are assumed to be known 

and pre-specified. A nonlinear observer for the system of (25) 

is specified as  

ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ( )) ( )( ( ) ( ))

ˆ ˆ( ) ( )

f f f

f

x t f x t x t u t L t y t y t
y t Hx t





   


    (26) 

The ‘f’ denotes the fused state obtained as a result of the MLF 

of the two measurements from the two sensors, combined at 

the data level, and (26) is rewritten as   

ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ( )) ( )( ( ) ( ))

ˆ ˆ( ) ( )

f f f c cm c f

c c f

x t f x t x t u t L t y t bH x t
y t bH x t

   


 (27) 

In (27), ycm and Hc are appropriate composite vectors/matrices 

to account for the direct data level fusion of the 

measurements/data coming from the two sensors, and bi can 

be appropriately accounted for. In (27), Lc(t) is the observer 

gain matrix of appropriate dimension, and is given as  

1( ) ( ) T
c c cL t P t H R                                                          (28)  

In case of the observer gain, (28), Rc is some positive definite 

matrix reflecting the combination of the measurements/data, 

and P(t) is obtained as the solution of the ORD equation  

2 1

0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
c cP t P t A t A t P t b P t H R H P t S A t A t          (29) 

By subtracting (27) from (26) we obtain the following error 

dynamics  

0 1

0 1

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) (.)

( ) ( ) ( ) ( ) ( ) ( ) (.)

f f f c c f f f

f f c c f f

e t A t e t A t e t L t H b x t x t
A t e t A t e t bL t H e t

 

 

     

    
     (30) 

In (30), ‘f’ denotes the fused condition, and it does not have 

any effect on the dimension of the state vector and hence state 

error, it only reflects the fact that the observer state has the 

combined effect of two measurements. In (30), we have the 

new nonlinear function as  

0 1
ˆ(.) ( ) ( ) ( ) ( ) ( , , ) ( , , )f f f f fA t e t A t e t f x t t f x t t             (31)   

In (31), the full forms for nonlinear functions and  f(.) are 

given for clarity as  

ˆ ˆ(.) ( ( ), ( ), ( ), ( ))

( , , ) ( ( ), ( ))

ˆ ˆ ˆ( , , ) ( ( ), ( ))

f f f f f

f f f

f f f

x t x t x t x t
f x t t f x t x t
f x t t f x t x t

   

 

 

  

  

  

 (32) 

We note that the state errors are given as 

ˆ ˆ( ) ( ) ( ); ( ) ( ) ( )f f f f f fe t x t x t e t x t x t          (33) 

We observe from (27)-(30), and the conditions of (10), and 

(11), that the theoretical development of Section 3 is equally 

applicable to the observer error dynamics of (30), and hence, 

we ascertain by induction that observer error dynamics of the 

newly proposed nonlinear observer (27) for systems with state 

delay, and randomly missing measurements/data in the data 

level fusion is locally asymptotically stable. 

 

Observer for the state vector fusion 

In the state vector level fusion (SVF), we consider that the 

measurements coming from two sensors are individually 

processed at each local sensor node, and then the estimated 

state vector is obtained from the individual estimate by the 

SVF formula. We consider the nonlinear dynamics model as 

in (25)  

( ) ( ( ), ( ))

( ) ( )

i i i i

i i i i

x t f x t x t
y t H x t





 


 (34) 

In (34), i=1,2 are the two sensors, the measurement data from 

which are processed by an individual observer at each sensor 

node as is done in Section 3.  

ˆ ˆ ˆ ˆ( ) ( ( ), ( )) ( )( ( ) ( ))

ˆ ˆ( ) ( )

i i i i i i i

i i i i

x t f x t x t L t y t y t
y t H x t





   


 (35) 

Once, the state estimates are obtained at each sensor node (of 

course concurrently by two processors), we can fuse these 

estimates by using the following formula as is done in the case 

of KF 

                  (36) 

 

 
1

1 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆ T

fP P P P P P


    (37) 

In (36) we have the individual state estimate obtained from 

the corresponding observer (2), that has processed the 

measurements from the corresponding sensor (i=1,2), and in 

(37), we have the Gramians(P for i=1,2), obtained by solving 

the corresponding matrix ORD equation (4). So, we look upon 

P(.), i=1,2; as the weighting matrices used in the fusion rule 

(36). Although, in the case of KF/EKF, P(.) are considered as 

the covariance matrices; so far as the SVF is concerned, these 

are the appropriate weighting factors obtained from the 

   
1

1 1 1 2 2 1ˆ ˆ ˆˆ ˆ ˆ ˆfx x P P P x x


   
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covariance matrices, and incidentally happened to be the 

covariance matrices themselves. In the case of the observers, 

we can consider these weighting factors as obtained from the 

Gramians (representing some uncertainty or dispersion of the 

estimate from the true value), and just happen to be the 

Gramians themselves. Again, we ascertain that the theoretical 

development of Section 3 is equally applicable to the 

observers of (35), since each is an individual observer as in 

(2), and hence, by induction observer error dynamics of the 

systems with state delay, and randomly missing 

measurements/data for the state vector fusion are locally 

asymptotically stable. 

 

Evaluation of the nonlinear observer 

The performance of the presented observer is validated using 

numerical simulations carried out in MATLAB. The 

simulations are done for a period of 4 seconds with a sampling 

interval of 0.01 sec. We consider the following nonlinear 

dynamic system  

1 1 1 2

2 2 2 2 1

( ) ( ( ) 3.3)( ( ) ( ))

( ) 10 ( ) 10 ( ) (3 ( ) 10) ( ))

x t x t x t x t
x t x t x t x t x t  

   

       
 (34) 

y(t)=x1(t) 

The model in (34) is the prey, x1(t) – predator, x2(t) 

population dynamics model [11]. For, data simulation as well 

as observer states, the dynamic equations (1), and (2) are 

solved by using Euler integration method, and hence, these 

equations and the Jacobians are properly represented in the 

discrete-form as 

1 1 1 2

2 2 2 2 1 1

( ) ( ( 1) 3.3)( ( 1) ( 1))

( ) 10 ( 2) 10 ( 1) 3 ( 2) ( 2) 10 ( 2)

x k x k x k x k
x k x k x k x k x k x k

      

         
 (35) 

1 2 1

0

2 ( 1) 3.3 ( 1) ( 1) 3.3
( )

0 10

x k x k x k
A k

        
  
 

 (36) 

1

2 1

0 0
( )

3 ( 2) 10 10 3 ( 2)
A k

x k x k
 

  
      

 (37) 

The value of R (or ‘r’) appearing in (4) is used as a tuning 

parameter. The state initial conditions used for the simulation 

and the nonlinear observer are chosen appropriately. In order 

to implement the observer algorithm, we need to solve the 

matrix ORD equation (4), and for this we use the following 

transformation [1] 

( )a P t d         (38) 

to obtain the following differential equations, appropriately from (4)  

2 1  
0
T Td A d b H R H a         (39) 

1 1 0( A )d+ATa I A a          (40) 

The equations (39) and (40) are solved by using the transition 

matrix method [1], then using (38) we get P(t). The 

performance of the observer with no missing 

measurements/data is illustrated in Figure 1. Figure 2 depicts 

the convergence of the eigenvalues of the matrix P (left 

graph), and the true and predicted measurements. Next, the 

measurement data are missed at level some level randomly. 

The performance of the observer with missing 

measurements/data is illustrated in Figure 3. Figure 4 depicts 

the convergence of the eigenvalues of the matrix P (left 

graph), and the true and predicted measurements when the 

measurement data are missing at some level. 

From Figures1 and 3, it is clear that the proposed nonlinear 

observer is asymptotically stable and satisfies the condition 

(24), when b=1 (no missing data), and when b=some value 

(some data are missing).  

 

Concluding remarks 

Some new results on nonlinear observer for system with state 

delay and randomly missing measurements have been 

obtained. The performance of such an observer has been 

validated using prey-predator population dynamics nonlinear 

model simulated in MATLAB. The asymptotic stability result 

obtained for such an observer using the Lyapunov energy 

functional has been validated by the behaviour of the 

eigenvalues of the Gramian matrices. The performance of the 

observer with and without missing measurement data has been 

found to be very satisfactory and the results corroborate the 

theoretical result presented in Section3. Also, the structures of 

the nonlinear observers for the system with state delay and 

randomly missing data have been presented, for measurement 

level fusion and state vector fusion, in comparison with the 

conventional filtering algorithms used for data fusion, and 

again for these observer based fusion schemes the same 

theoretical results hold true.  

 

 

Figure 1: Time history match of the true (-) and observer 

states (-.); no missing data. 
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Figure 2: Eigenvalues of the P showing 

convergence/satisfaction of the condition of (10),related to 

state x1 (-), & state x2 (--); and the true (-), and predicted 

measurements (--); No missing data. 

 

 

Figure 3: Time history match of the true (-) & observer (-.) 

states; some missing data. 

 

 

Figure 4: Eigenvalues of the P showing 

convergence/satisfaction of the condition of (10), related to 

state x1 (-), & state x2 (--); and the true (-), and predicted 

measurements (--); some missing data. 

 

REFERENCES 

[1] Raol, J. R, GirijaGopalratnam, and B. Twala, 2016, “ 

Nonlinear Filtering: Concepts and Engineering 

Applications”,  CRC Press, Florida, USA. 

[2] Sinopoli, Bruno, et al. 2004, “Kalman filtering with 

intermittent observations”,  IEEE Transaction on 

Automatic Control, Vol. 49, No. 9, pp. 1453-1464.I. 

Ansoff. “Strategic Management”. Moscow: Ekonomika, 

1998. 

[3] Nelwamondo, Fulufhelo Vincent, and TshilidziMarwala, 

2008, “ Techniques for handling missing data: 

applications to online condition monitoring”,  Int. Jl. of 

Innovative Comput.Inf. Control Vol. 4, No. 6, pp. 1507-

1526. 

[4] Yang, Rongni, Peng Shi, and Guo-Ping Liu, 2011, 

“Filtering for discrete-time networked nonlinear systems 

with mixed random delays and packet dropouts”, IEEE 

Transaction on Automatic Control, Vol. 56, No. 11, pp. 

2655-2660. 

[5] Chen, D., and Xu Long, 2014, “Optimal Kalman filtering 

for a class of state delay systems with randomly multiple 

sensor delays”, Abstract and Applied Analysis.Hindawi 

Publishing Corporation. Vol. 2014, ID716716, pp. 1-10. 

[6] Cipra, T., and Romera, R., 1997, “Kalman filter with 

outliers and missing observations”, Sociedad de 

Estadistica e InvestigacionOperativa. Test Vol. 6, No. 2, 

pp. 379-395. 

[7] Savkin, A. V., Petersen I. R., and Reza Moheimani, 1999, 

“S. O. Model validation and state estimation for uncertain 

continuous-time systems with missing discrete-

continuous data”, Computers and electrical engineering, 

Pergamon, Vol. 25, pp. 29-43. 

[8] Tresp, V., and Hofmann, R., 1998, “Nonlinear time-series 

prediction with missing and noisy data”,  Neural 

Computation, Vol. 10, pp. 731-747. 

[9]  Basin, M.V., Rodriguez-Gonzalez, J., and Martinez-

Zuniga, R. Optimal filtering for linear systems with state 

delay. International Jl. of Pure and Applied Mathematics. 

Vol. 10, No. 3, pp. 241-255, 2004. 

[10] KoranyMohmad, S. M., and Nahavandi, S. Optimal 

multisensor data fusion for systems with missing 

measurements. Systems of Systems Engineering, 

SoSE’08, IEEE International Conference, Singapore, pp. 

1-4, June 2008.www.ieeexplore.ieee.org/xpls/abs_ 

all.jsp?arnumber=4724205, accessed Aug 2015.     

[11]  Raff, T., and Allgower, F. An EKF-based observer for 

nonlinear time-delay systems. In Proc. of the American 

Control Conference, Minneapolis, MN, USA, 2006:4, pp. 

3130-3133, July 2006; 

[12]  http://bibbase.org/network/publication/raff-allgwer-

anekfbasedobserverfornonlineartimedelay-systems-2006; 

accessed January 2016.  

[13]  Reif, K., Sonnemann, F. and Unbehauen, R. An EKF-

based nonlinear observer with a prescribed degree of 

stability.Automatica, Vol. 34, pp. 1119-1123, Sept. 1998, 

https://www.researchgate.net/publication/ 220157426, 

accessed January 2017.  

[14]  Raol, J. R. Data Fusion Mathematics-Theory and 
Practice. CRC Press, Florida, USA, July 2015. 

http://bibbase.org/network/publication/raff-allgwer-anekfbasedobserverfornonlineartimedelay-
http://bibbase.org/network/publication/raff-allgwer-anekfbasedobserverfornonlineartimedelay-
https://www/

