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Abstract: In this paper, H (H-Infinity, HI)-based nonlinear observers for continuous time dynamic system with 

state delay, and randomly missing measurements are presented. The Lyapunov energy (LE) functional to derive 

sufficient conditions for the local asymptotic stability for the observer-state error equations is derived. This observer’s 

performance with and without randomly missing measurements is evaluated by simulations carried out in MATLAB. 

The results validate the theoretical asymptotic behaviour of the proposed HI-based nonlinear observer. Then, the 

nonlinear observer is extended to nonlinear system with state delay and randomly missing measurements in the 

measurement data level (MLF) and state vector fusion (SVF) modes for multi-sensor data fusion (MSDF). It is 

ascertained that the derived theoretical result automatically extends to these nonlinear observers for data fusion due to 

their non-complicated structures. 

 

Keywords: Delayed states, randomly missing data, HI-based nonlinear observers, asymptotic result, measurement 

and state vector level fusion.    

1. Introduction  

In modelling, control theory & practice, and the 

estimation-cum-filtering theory, the objective of 

an observer is to reconstruct the state of a 

dynamic system using the knowledge of the 

system input/output (I/O) data. In case of linear 

systems, the system states can be estimated using 

the Luenberger observer (LO) or Kalman filter 

(KF); whereas for a nonlinear system one uses an 

extended Luenberger observer (ELO) or extended 

Kalman filter (EKF) [1]. Yet, the results for state 

estimation of nonlinear systems with delayed 

states and randomly missing measurements are 

only very few. However, there are several real-

life dynamic systems like transportation, 

chemical reactors, biological systems, computer 

networks, communication systems, and wireless 

sensor networks (WSNs), wherein state delays 

and/or missing measurements could occur. 

Sometimes, in a data-communication channel a 

few or many measurement data might be missing 

(from one or more sensors); in such cases, it 

becomes important to evaluate the performance 

of the data processing algorithms despite of these 

missing data. In the absence of certain signals 

during certain time intervals, invariably one 

would have only the random (measurement) 

noise or some unknown deterministic disturbance 

present in these channels. This joint-combined 

synergy aspect has not evolved much in the 

context of nonlinear systems. However, some 

work has been done in certain areas and specific 

topics [2-10]. In [2-4] a few special cases have 

been considered: i) intermittent observations, ii) 

missing data in online condition monitoring of 

systems, and iii) occasional packet dropouts, etc. 

In [5], a system with multiple sensor-delay has 

been considered, but the algorithm happens to be 

a bit complex. The problem of measurement data 

outliers and missing data has been considered in 

[6], but the illustration has been given only for 

simple time-series case. In addition, although, [7, 

8, 10] deal with missing measurements, the aspect 

of state delay is not treated; whereas in [9] only 

the system delay is considered. Interestingly in 

[11] an EKF-based nonlinear observer has been 

proposed for the system with time-delays and 



 

21 
 

some asymptotic results have been presented [11, 

12], but the aspect of missing measurements has 

not been studied. Here, we consider the state 

delay as well as randomly missing measurements 

in a nonlinear observer in a synergistic manner. 

In particular, a few data might be missing due to: 

i) a failure of a senor (or more sensors), and/or b) 

there might be a problem in a communication 

channel such that the received data are only the 

noise and the real signal is missing. Hence, it is 

very important to incorporate the situation of 

missing data in a nonlinear observer in some 

optimal or sub-optimal way. The (state) time 

delay also, could be encountered in a few real-

time systems, due to latency time of certain 

channels; and this time delay is a key factor that 

would influence the overall system’s stability and 

performance. That is, if these system’s state delay 

and missing data are not handled appropriately in 

a tracking algorithm, then one might lose the 

track, or the tracking performance might be poor. 

In certain cases the system’s state delay would 

directly affect the measured data, since these data 

are dependent on the delayed states in some 

specific way.   

 

Hence, an HI-based nonlinear observer is 

proposed that would handle state delay as well as 

randomly missing data leading to sub-optimal 

estimator-cum-observer; and also the asymptotic 

condition for the observer error dynamics based 

on LE Functional is derived. Then, the 

performance of the proposed observer is 

illustrated by implementing the algorithm in 

MATAB. Also, proposed are the nonlinear 

observer structures for nonlinear continuous time 

system with state delay and randomly missing 

measurements in the context of MSDF; for MLF, 

and SVF fusion, and ascertain that a state vector 

fusion formula for this observer can be directly 

taken from that for the KF/EKF, and that the 

asymptotic result also extends to these fusion 

mode-observers in a straight forward manner. 

Thus, the presented results and inferences here 

are novel in the area of observer and multisensory 

data fusion theory. 

2. Nonlinear system and observer 

error dynamics    

Let the nonlinear delayed state model with 

randomly missing measurements be given as  

1 2

( ) ( ( ), ( ), ( )) ( ) ( )

( ); ( ) ( ) ( ) ( )

x t f x t x t u t g x w t

z h x y t h x q x w t





  

  
     (1) 

In (1), the scalar quantity   is a Bernoulli 

sequence (in which case one could have 

written y(k)=  (k)H(k)x(k), after 

linearization of h2), and this sequence would 

take values 0 and 1 randomly; thus,

{ ( ) 1} ( )E k b k   , and

{ ( ) 0} 1 ( )E k b k    , with b as the 

percentage of measurement data that arrive 

to/from  a sensor node, and E{.} is the 

mathematical expectation. This arrangement 

signifies that a few measurements data are 

randomly missing, and constant b is assumed 

to be known/pre-specified. The initial 

conditions for the states and delayed state are 

assumed to be appropriately specified [13]. 

The variables in (1), have usual appropriate 

dimensions, and presently consider that these 

belong to real 2D space (say H2 vector 

spaces), however, in the context of HI theory 

these variables can be considered as 

generalized random variables. In (1), w(.) is 

considered as an unknown disturbance, y(.) is 

a measurement vector, and z(.) is the quantity 

to be estimated [13], and often it is called 

estimatee of the state vector x. It is also, 

assumed that the nonlinear function f, g, h1, 

h2, and q are continuously differentiable. 

Presume that the system of (1) has a unique 

solution. Then, a nonlinear observer for the 

system of (1) is proposed as   

    
1 2

ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ( )) ( )( ( ) ( ))

ˆ ˆ ˆˆ( ) ( ); ( ) ( )

x t f x t x t u t L t y t y t

z t h x y t h x





   

 

    (2) 

In (2), L(t) is an observer gain matrix of 

appropriate dimension, and is determined by 

using the cost function based on H-Infinity 

concept. The idea is to seek that the L2 gain 

from the input disturbance energy to the 
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output estimation error energy obeys the 

following inequality [13]   

 
0

0

2 2

0( ) ( ) ;

T
T

t
t

z d w d T t           (3) 

In (3), the estimation error defined as  

1 1
ˆˆ( ) ( ) ( ) ( ) ( )z t z t z t h x h x                   (4) 

The cost function for (3) can be formulated as  

0

2 221
( , ) ( ( ) ( ) )

2

T

t

J w L z t w t dt       (5) 

In (5),   (>0) specifies the error energy gain 

from the input to the output and can be 

considered as a tuning parameter. This means 

that the actual error energy gain is bounded 

from above by square of this factor, so the 

observer is not optimal but it is sub-optimal, 

and yet robust. Finally following [13], the 

observer gain that includes the missing data 

factor can be chosen as  

         ( ) ( ) ( )TL t bP t H t                             (6)  

In (5), P(t) is obtained as the solution of the 

observer Riccati differential (ORD) equation  

0 0 2

1 1

0

1
( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( );

(0) ; ( ) 0

T T T

T T

P t P t A t A t P t P t C t C t L t L t

P t A t A t B t B t

with P P P T


   

  

 

     (7)                               

Also, in (6) matrix R that is found in KF gain 

formula (P(t)HT(t)R-1) is not present; 

however it can be easily incorporated for the 

sake of tuning the observer, and can be 

regarded as a weighting matrix/factor. In that 

case the observer gain would be
1( ) ( ) ( )TL t bP t H t R , and this would not 

pose any problem in the proposed derivation 

of the asymptotical result for this nonlinear 

observer. The alternative form of the ORD 

equation (7) is [13] 

2

0 0 2

1 1

1
( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( )

T T T

T T

P t P t A t A t P t P t C t C t b H t H t

P t A t A t B t B t


   

  

  (8) 

Now, the observer gain (6) is based on (7) and 

hence, in turn on the H infinity norm-cum-

filtering theory [13]. Various Jacobians 

needed in (8) are obtained as 

  0 1

(.) (.)
( ) ; ( )

ˆ ˆ( ) ( )

f f
A t A t

x t x t 

 
 
  

; 

1 2(.) (.)(.) (.)
( ) ; ( ) ; ( ) ; ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

h hg q
B t C t H t D t

x t x t x t x t

  
   
  

  (9)                                                                             

In (8), an additional term, A1(.) arises due to 

the state delay as in (2). In (6)-(8), one can 

see that although, various quantities are 

function of ( x̂ , t), the dependence only on t 

for simplicity is mentioned. By subtracting 

(2) from (1) one obtains the following error 

dynamics  

0 1

0 1

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))

(.) ( ( ) ( ) ( ) )

( ) ( ) ( ) ( ) ( ) ( ) ( )

(.) ( ( ) ( ) ( ))

e t A t e t A t e t L t H t b x t x t

B t x L t D t x w

A t e t A t e t bL t H t e t

B t L t D t xw









    

  

   

  

   (10) 

Then drop the last term from (10), to obtain 

the error dynamics for the observer without 

the disturbance term. In (10), the nonlinear 

function is   

0 1(.) ( ) ( ) ( ) ( )

ˆ( , , ) ( , , )

A t e t A t e t

f x t t f x t t

 

 

   

   
              (11)   

The form of (10) is obtained by adding and 

subtracting the terms related to the Jacobians 

in the original equations of the error 

dynamics. In (11) the full forms for f and 

(.) are given for clarity           
ˆ ˆ(.) ( ( ), ( ), ( ), ( ))x t x t x t x t                (12) 

( , , ) ( ( ), ( ))

ˆ ˆ ˆ( , , ) ( ( ), ( ))

f x t t f x t x t

f x t t f x t x t

 

 

  

  
 (13) 

However, for simplicity one can use very 

compact form of f by avoiding the arguments 

since, these would be implied any way from 

its defining form (1), and (2), and also u(t) is 

omitted. The state errors are given as 
ˆ ˆ( ) ( ) ( ); ( ) ( ) ( )e t x t x t e t x t x t         (14)  
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3. Asymptotic result for observer 

error dynamics    

Let us consider the following conditions 

[11,12] for the local asymptotic behaviour of 

the observer error dynamics of (10) 

1. The solution of the ORD equation (8) 

is considered bounded    

         ( )l up I P t p I                              (15)  

with ,l up p > 0 as positive constants (since 

P(t) is also theoretically, positive definite and 

symmetric matrix), and ,l up p are the lower 

and upper bounds respectively; and I is the 

identity matrix.  

2. The nonlinearity in (11), (12) of the 

error dynamics is bounded 

  2 2

1 2
ˆ ˆ(.) ( ) ( ) ( ) ( )x t x t x t x t                      (16)  

with the bounding constants equal to or 

greater than zero. Then, the nonlinear 

observer error dynamics (10) are locally 

asymptotically stable, if the conditions 1 and 

2 are satisfied.  

First, consider the following normalized LE 

functional to establish the asymptotic 

stability of the error dynamics (10)     

     ( ) ( ) ( ) ( )TV t e t Y t e t                            (17) 

In (17), Y(t) is the normalizing/weighting 

matrix and can be recognized as an 

information matrix, and is given as Y(t)=P-

1(t). In the case of KF, P(t) is considered as 

the covariance matrix of the state error-

vector. However, since observer gain is used 

form from the H infinity theory, and since 

variable w(.) is considered as some unknown 

disturbance, then, following the H infinity 

filter theory, (and in particular for the 

presented nonlinear observer since, one is not 

dealing with the stochastic noise processes), 

one would call the matrix P(t) as the Gramian 

matrix. For the inverse of matrix P(t), one can 

still retain the name ‘information matrix’, or 

call it as the information Gramian, In that 

case the variables x(.), z(.), y(.), and e(t) can 

be considered as the generalized ‘random’ 

variables. The LE functional (17) is positive 

definite because it is governed by the 

condition 1, the inequality of (15) as follows     

  

   
2 21 1

( ) ( ) ( ) ( ) ( )T

u l

e t e t Y t e t e t
p p

     (18)  

The point in obtaining the asymptotic result 

is that the time derivative of the LE 

functional, (17), under the constraints 

governed by error dynamics (10), and (6) and 

(8), should be negative definite for all time t. 

For simplicity, write the error dynamics as  

0 1( ) ( ) ( ) ( )

(.) ( )

e t A e t Ae t bLHe t

B LD xw





   

  
          (19) 

Then the time derivative of (17) is given as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TV t e t Y t e t e t Y t e t e t Y t e t    

0 0

1

1

( ) ( ) ( ) ( ) ( ){ ( ) ( )

( ) ( ) } ( ) ( ) ( ) ( )

( ) ( ) ( )

2 ( ) ( ) (.) 2 ( ) ( )( )

T T T

T T T T

T

T T

V t e t Y t e t e t A Y t Y t A

bH L Y t bY t LH e t e t A Y t e t

e t Y t A e t

e t Y t e t Y t B LD xw







  

   

 

  

  (20)  

Next, substitute for ( ) ( ) ( ) ( )Y t Y t P t Y t  , and 

(6) and (8) in (20) to obtain 

1 1 1

1

2

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

2 ( ) ( ) (.) 2 ( ) ( )( )

T T T T

T T

T T T

T T T

T T

V t e t Y t A t A t Y t e t e t A t Y t e t

e t Y t A t e t e t e t

e t e t e t Y t BB Y t e t

e t C Ce t b e t H He t

e t Y t e t Y t B LD xw



  

 





   

    

   

 

  

 (21) 

In obtaining (21), because of the substitution 

of (6), and (8), several common terms cancel 

out; no approximations are made. In (21), add 

and subtract the term ( ) ( )Te t e t   , and 

thus due to the structure of the first four terms 

of (21), one can combine these in the compact 

form
2

1 ( ) ( ) ( ) ( )TA t Y t e t e t    , and by 

using this in (21) one obtains 
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2

1

2

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) (.) 2 ( )( ( ) )

T T

T T T T T

T T T

V t A t Y t e t e t e t Y t SY t e t

e t C Ce t b e t H He t e t e t

e t Y t e t Y t B bH D xw



 




    

    

  

 (22) 

In (22), S=BBT, then, get the following 

equivalent inequality by dropping the first 

compact term (this does not affect the 

inequality) from (22)  

2

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) (.) 2 ( ){ ( ) )

T T T T

T T T T

V t e t Y t SY t e t e t C Ce t b e t H He t

e t e t e t Y t e t Y t B bH D xw



  

   

     

 (23) 

Now, in (23), assume that
2 2; ;T TC C c H H h  (c and h being 

positive constants),
2 2( )e t  , and since, 

these are known and pre-specified quantities, 

or should be finite, one obtains 

22 2 2 2 2

2

1
( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) (.) 2 ( ){ ( ) }

T

T T T

V t e t Y t SY t e t c b h e t

e t Y t e t Y t B bH D xw

  




     

  

    (24) 

Then, using the inequality from (16), one 

obtains 

21

2 2 2 2 2 22

2

2

( ) ( ) ( ) ( ) ( ) 2{ ( ) ( )

1
( ) ( }

( 2 ( ){ ( ) }

T

u

u

T T

V t e t Y t SY t e t e t e t
p

e t e t c b h
p

e t e t Y t B bH D xw




  





  

   

   

 

2 21

2

2 2 2 2 2 22

2

2

( ) ( ) 2{ ( ) ( )

1
( ) ( }

( 2 ( ){ ( ) }

l

u u

u

T T

s
V t e t e t e t

p p

e t e t c b h
p

e t e t Y t B bH D xw




  





  

   

   

  (25) 

2 2 21

2

22 2

2

2
( ) { ( ) } ( ) { 1

21
( ) } (

2 ( ){ ( ) }

l

u u

u

T T

s
V t e t e t b h

p p

c e t e t
p

e t Y t B bH D xw








    

  

 

  (26) 

In (25), ls is the smallest (positive) eigenvalue 

of the matrix S, that is positive definite. For 

( )e t  , the following condition from (26) 

is obtained  

21

2

22 2 2 2

2

2
( ) { } ( )

21
{ 1 } (

2 ( )

l

u u

u

T

u

s
V t e t

p p

b h c e t
p

B
bH D xw

p





 





  

    

 

 (27) 

2 2 2 2
2

2

1 2

( ( 1) )
( ) { ; } ( )

2 2

l u

u

s b h c p
V t e t

p



  

 
   (28) 

In (27), if it is assured that the last term in the 

parenthesis is zero, by having T

uB bH Dp

(or alternatively one can heuristically assume 

that the estimation error, the state and the 

unknown disturbance are uncorrelated, and 

drop the last term) and since, all the constants 

and bounds appearing in the {.;.} in (28) are 

positive, and also, regarding the bounding 

constants in (16), as positive, (in the case that 

these are really equal to zero, one can assign 

them slightly positive values, without loss of 

any generality; and since these constants are 

arbitrary, and one can always assure that 
2 2 2 2 2h b c   ). Thus, it is seen that the 

time derivative of the Lyapunov energy 

functional is bounded from above as in (28). 

Since, the Lyapunov energy functional is 

positive definite as in (17) and (18), and its 

time derivative is locally negative definite as 

in (28), the observer error dynamics of the 

newly proposed HI based nonlinear observer 

for system with state delay, and randomly 

missing measurement data is locally 

asymptotically stable.        

4. Nonlinear observers for data 

fusion schemes    

Multi-sensor data fusion is an evolving 

technology at software, algorithms and 

hardware levels and is defined recently as: 
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‘an act, that could be additive, multiplicative, 

operative, and/or logical by which a) the 

quantitative information in the sense of 

Fisher’s information matrix is enhanced by 

fusing/combining data from more than one 

sensor or source, and/or b) the prediction 

accuracy is enhanced, compared to the usage 

of a single sensor-data or source’ [14].   

 

4.1 Observer for the measurement data 

level fusion  

Consider the model with state delay, and 

missing data in the measurement data level 

fusion. The state-space model is similar to 

(1), and the measurement model for the two-

sensor scheme is made simpler and given as  

1 2

( ) ( ( ), ( ), ( )) ( ) ( )

( ); ( ) ( )i i i

x t f x t x t u t g x w t

z h x y t h x





  

 
   (29) 

In (29), yi(t), i=1,2 is the output from the first 

(i=1), and the second (i=2) sensors; and here 

also, the scalar quantity i is a Bernoulli 

sequence; and in which case one could have 

written y(k)= i (k)H(k)x(k), without loss of 

any generality, and this sequence takes values 

0 and 1 randomly; thus, one has

{ ( ) 1} ( )i iE k b k   and

{ ( ) 0} 1 ( )i iE k b k    , with bi as the 

percentage of measurement data that arrive 

to/from any sensor node for further 

processing by the nonlinear observer. This 

signifies that a few data are randomly 

missing. The constant bi are assumed to be 

known and pre-specified, or can be obtained 

from some related previous data processing 

exercises. Then, a nonlinear observer for the 

system of (29) can be specified as  

    

ˆ ˆ ˆ( ) ( ( ), ( ), ( ))

ˆ( )( ( ) ( ))

ˆ ˆ( ) ( )

f f f

c cm c

c c c f

x t f x t x t u t

L t y t y t

y t H x t





 

 



              (30) 

In (30) the subscript ‘f’ denotes the fused 

state obtained as a result of the MLF of the 

two measurements from the two sensors, 

combined at the data level, and (30) is 

rewritten as   

ˆ ˆ ˆ( ) ( ( ), ( ), ( ))

ˆ( )( ( ) ( ))

ˆ ˆ( ) ( )

f f f

c cm c f

c c f

x t f x t x t u t

L t y t bH x t

y t bH x t

 

 



           (31) 

In (30), ycm and Hc are appropriate composite 

vectors/matrices which account for the direct 

data level fusion (MLF) of the measurement 

data coming from the two sensors, and bi can 

be appropriately accounted for. In (30), Lc(t) 

is the observer gain matrix of appropriate 

dimension, and is given as per the HI theory 

as seen in the previous section 

         ( ) ( ) T

c f cL t P t H                             (32)  

In (32), Pf(t) is obtained as the solution of the 

ORD equation  

0 0

2

2

1 1

( ) ( ) ( ) ( ) ( )

1
( )[ ( ) ( ) ( ) ( )] ( )

( ) ( )

T

f f f

T T

f c c f

T

P t P t A t A t P t

P t C t C t b H t H t P t

A t A t S



 

 

 

     (33)  

By subtracting (30) from (29) one obtains the 

following error dynamics  

0 1

0 1

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))

(.) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

(.) ( )

f f f c c f f

f f

f f c c f

f f

e t A t e t A t e t L t H t b x t x t

B t x w

A t e t A t e t bL t H t e t

B t x w









    

 

   

 

    (34)    

In (34), ‘f’ denotes the fused condition, and it 

does not have any effect on the dimension of 

the state vector (and hence state error), it 

reflects the fact that the observer state has the 

combined effect of two measurements. In 

(34), one has the nonlinear function as  

0 1(.) ( ) ( ) ( ) ( )

ˆ( , , ) ( , , )

f f f

f f

A t e t A t e t

f x t t f x t t

 

 

   

   
      (35)   



 

26 
 

In (35), the full forms for the nonlinear 

functions and  f(.) are given for clarity as                                                                                                     
ˆ ˆ(.) ( ( ), ( ), ( ), ( ))

( , , ) ( ( ), ( ))

ˆ ˆ ˆ( , , ) ( ( ), ( ))

f f f f f

f f f

f f f

x t x t x t x t

f x t t f x t x t

f x t t f x t x t

   

 

 

  

  

  

    (36) 

Note that the state errors are given as 

ˆ( ) ( ) ( );

ˆ( ) ( ) ( )

f f f

f f f

e t x t x t

e t x t x t  

 

    
               (37)                                                                     

One can observe from (32)-(34), and the 

bounding conditions of (15), and (16), that 

the theoretical development of Section 3 is 

equally applicable to the observer error 

dynamics of (34), and hence, one infers and 

ascertains by induction that observer error 

dynamics of the newly proposed nonlinear 

observer (31) (based on H infinity filter 

theory) for systems with state delay, and 

randomly missing measurement data in the 

data level fusion is locally asymptotically 

stable.       

 

4.2 Observer scheme for the state vector 

fusion   

Consider, in the state vector level fusion 

(SVF), that the measurements coming from 

two sensors are separately processed at each 

local sensor node, and then the estimated 

state vector is obtained from the individual 

estimates by the SVF formula. Consider the 

nonlinear dynamics model as in (29)     

1 2

( ) ( ( ), ( )) ( ) ( )

( ); ( ) ( )

i i i i i

i i i i i i i

x t f x t x t g x w t

z h x y t h x





  

 
      (38) 

In (38), i=1,2 as the two sensors, the 

measurement data from each one are 

processed by an individual observer at each 

sensor node as is done in Section 3. The 

observer is given as 

1 2

ˆ ˆ ˆ ˆ( ) ( ( ), ( )) ( )( ( ) ( ))

ˆ ˆ ˆˆ ( ); ( ) ( )

i i i i i i i

i i i i i i i

x t f x t x t L t y t y t

z h x y t h x t





   

 

           (39) 

After the state estimates are obtained by each 

sensor node (of course concurrently by two 

processors), one can fuse these state 

estimates by using the formula as is done in 

the case of KF SVF 

(40) 

 
1

1 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆ T

fP P P P P P


        (41) 

In (40) one has the individual state estimates 

obtained from the corresponding observer 

(39), that has processed the measurements 

from the corresponding sensor (i=1,2), and in 

(41), one has the Gramians (P for i=1,2), 

obtained by solving the corresponding matrix 

ORD equation (8). Hence, here, look upon 

P(.), i=1,2; as the weighting matrices used in 

the fusion rule (40). In the case of KF/EKF, 

P(.) are considered as the covariance 

matrices; however, for the SVF these are the 

appropriate weighting factors/matrices 

obtained from the covariance matrices, and 

happened to be the covariance matrices 

themselves. In the case of the nonlinear 

observers, one can consider these weighting 

factors/matrices as obtained from the 

Gramians (representing some uncertainty or 

dispersion of the estimate from the true 

value), and just happen to be the Gramians 

themselves, from the H infinity filtering 

theory. Here, also, it is ascertained that the 

theoretical development of Section 3 is 

equally applicable to the observers of (39), 

since each is an individual observer as in (2), 

and hence, by straightforward induction, the 

observer error dynamics of the systems with 

state delay, and randomly missing 

measurement data for the state vector fusion 

are locally asymptotically stable.       

   
1

1 1 1 2 2 1ˆ ˆ ˆˆ ˆ ˆ ˆ
fx x P P P x x



   
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5.      Simulation evaluation of the 

nonlinear observer  

The presented HI based nonlinear observer is 

validated using numerical simulations carried 

out in MATLAB. The simulations are done 

for a period of 4 seconds with a sampling 

interval of 0.01 sec. Consider the following 

nonlinear dynamic system for simulation 

purpose  

1 1 1 2

2 2 2 2 1

( ) ( ( ) 3.3)( ( ) ( ))

( ) 10 ( ) 10 ( ) (3 ( ) 10) ( ))

x t x t x t x t

x t x t x t x t x t  

   

       

    (42) 

y(t)=x1(t) 

The nonlinear dynamic model in (42) is the 

prey, x1(t) – predator, x2(t) population 

dynamics model [11]. For, simulation as well 

as observer states, the dynamic equations (1), 

and (2) are solved by using Euler integration 

method, and hence, these equations and the 

Jacobians are appropriately represented in the 

discrete-form as 

1 1 1 2

2 2 2 2 1 1

( ) ( ( 1) 3.3)( ( 1) ( 1))

( ) 10 ( 2) 10 ( 1) 3 ( 2) ( 2) 10 ( 2)

x k x k x k x k

x k x k x k x k x k x k

      

         

 (43) 

1 2 1

0

2 ( 1) 3.3 ( 1) ( 1) 3.3
( )

0 10

x k x k x k
A k

        
  
 

    (44) 

1

2 1

0 0
( )

3 ( 2) 10 10 3 ( 2)
A k

x k x k

 
  

      

            (45) 

The state initial conditions for the simulation 

and the observer are chosen appropriately. To 

implement the observer algorithm, one needs 

to solve the matrix ORD equation (8), and for 

this use the following transformation method 

[1] 

( )a P t d         (46) 

Then using (46) in (8), obtain the  

differential equations    

2

2

1
( C C) 

0
TT Td A d b H H a


         (47) 

1 1 0( A )d+AT Ta BB A a                   (48) 

The equations (47) and (48) are solved by 

using the (state-) transition matrix technique 

[1], for a and d, then using these in (46), 

obtain P(t). The performance of the observer 

with missing measurements at some level is 

illustrated in Figure 1. Figure 2 depicts the 

convergence of the eigenvalues of the matrix 

P (left graph), and true and predicted 

measurements. The performance of the 

observer with missing measurement data at 

some level and with the gamma factor used is 

illustrated in Figure 3. Figure 4 depicts the 

convergence of the eigenvalues of the matrix 

P (left graph), and the true and predicted 

measurements when the measurement data 

are missing at some level, and with gamma 

factor used. Table 1 shows the percentage fit 

errors for the states x1, and x2 and the 

measurement data fit error computed by 

using the formula: 

PFE=100*norm(error)/norm (true signal). 

From Figures 1-4, it is clear that the proposed 

nonlinear observer is asymptotically stable 

when some measurement data are missing at 

certain level. From Table 1 it can be seen that 

the PFEs of the HI based nonlinear observer 

are nearly similar or slightly more compared 

to the nonlinear observer when no gamma 

factor is used; in some cases even it is lesser 

as shown in bold numbers. The case of the no 

gamma factor corresponds to the nonlinear 

observer that is based on the usage of 

observer gain from the continuous time KF 

theory. Obviously, the measurements’ PFEs 

show higher values when these data are 

missing. The studies presented in the present 

paper, and in refs. [11]-[13] pave the way for 

bringing synergy in the theory of observers, 

extended Kalman filter and H filtering.            

 

6. Concluding remarks 

In this paper, some new results on nonlinear 

observers for system with state delay and 

randomly missing measurements based on 

the H-infinity filter theory are presented. 
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Specifically, the asymptotic stability result 

has been presented for this HI based observer 

using the Lyapunov energy functional. The 

performance of the observer has been 

validated using prey-predator population 

dynamics model simulated in MATLAB. 

This exercise shows that despite some 

measurement data are missing, the 

performance of the proposed H infinity-based 

nonlinear observer is largely satisfactory and 

also corroborates the asymptotic results 

derived using the Lyapunov energy (LE) 

functional, as demonstrated and validated by 

the behaviour of the eigenvalues of the 

Gramian matrix. Also, the structures of the 

HI based nonlinear observers for the system 

with state delay and randomly missing data 

have been presented, for measurement level 

fusion and state vector fusion, in comparison 

with the conventional methods. Here, again 

for these observer based fusion schemes, the 

same asymptotic theoretical result holds true 

because of their non-complicated structures.    
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                             Table 1 PFE metrics for the nonlinear observers  

                                        

 

                                Figure 1. Time history match of the true (-) and observer states (-.); 

with missing data (level 20%, No gamma factor used). 

 

 

Figure 2. Eigenvalues of the P showing convergence/satisfaction of the condition of asymptotic  

Data missing No gamma factor used Gamma factor used 0   

(HI based observer) 

 State x1 State x2 Meas. y State x1 State x2 Meas. y 

No 4.32 4.95 6.2 4.96 4.6 6.6 

Yes, 5 % 4.2 4.76 23.4 4.94 4.3 23.61 

Yes, 20 % 5.86 7.32 49.7 5.5 5.6 50.35 
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stability, related to state x1 (-), & state x2 (--); left graph; and the true (-), and predicted 

 measurements (--); with missing data (level 20%, No gamma factor used). 

                 

Figure 3. Time history match of the true (-) & observer (-.) states; with missing data 

(level 20%, with gamma factor used). 

 

                     

     Figure 4. Eigenvalues of the P showing convergence/satisfaction of the condition of asymptotic  

     stability, related to state x1 (-), & state x2 (--); left graph; and the true (-), and predicted  

measurements (--); with missing data (level 20%, with gamma factor used). 

 

 
 


