

Sixth Semester B.E./B.Tech. Degree Examination, June/July 2025

Power System Analysis - I

Duration: 3 hrs.

Max. Marks: 100

*Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. M : Marks , L: Bloom's level , C: Course outcomes.*

Module - 1			M	L	C
Q.1	a.	What is per unit system? List the advantages of a per-unit system.	5	L1	CO1
	b.	Show that the per unit impedance of a two winding transformer on either of its side is equal.	5	L1	CO1
	c.	For the single line diagram of power system shown in Fig.Q.1(c). Draw the PU impedance diagram, select $KV_b = 22$ kV (generator side) $MVA_b = 100$.	10	L3	CO1

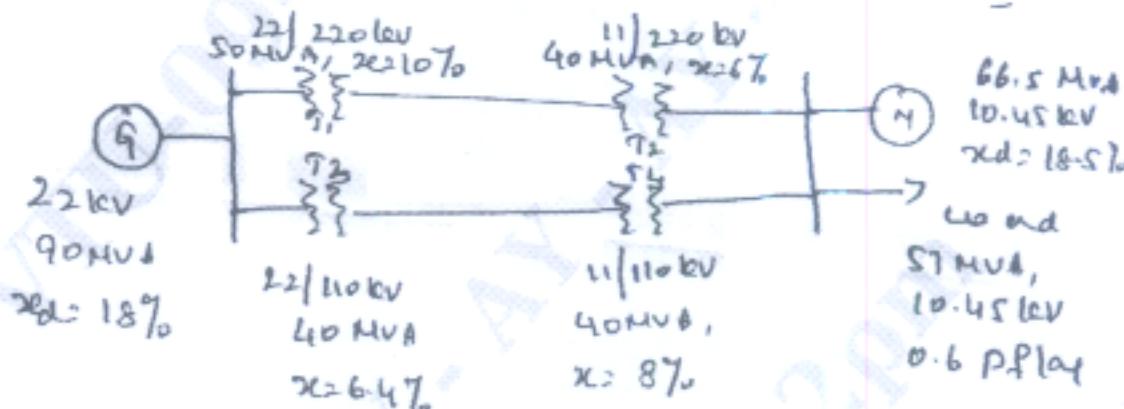


Fig.Q.1(c)

OR

Q.2	a.	What is single line diagram? What is the need of single line diagram? Explain the procedure for finding the per-unit reactance diagram by stating all the assumptions involved.	10	L1	CO1
	b.	A single line diagram of a power system is shown in the Fig.Q.2(b). Draw its impedance diagram. Choose a base of 100 MVA, 220 KV, in 50Ω line. The rating of generator, motor and trf are given below: Generator : 40 MVA, 25KV, $x = 20\%$ Sy. Motor : 50 MVA, 11KV, $x = 30\%$ y-y-Trf : 40 MVA, 33/220 KV, $x = 15\%$ y- Δ Trf : 30 MVA, 11/220 KV (Δ/y), $x = 15\%$	10	L3	CO1

Fig.Q.2(b)

Module – 2

Q.3	a.	With the oscillogram of the short circuit current of a synchronous machine, define direct axis synchronous reactance, transient and sub-transient reactance.	10	L2	CO2
	b.	For the radial network shown, a 3 phase fault occurs at point f. Determine the fault current. Choose the generator ratings as base values: Generator G_1 : 10 MVA, 11KV, $x = 20\%$ Generator G_2 : 10 MVA, 11KV, $x = 12.5\%$ Transformer T_1 : 10 MVA, 11/33 KV, $x = 10\%$ Transformer T_2 : 25 MVA, 33/6.6 KV, $x = 8.7\%$ Overhead line Imp $Z = 6 + j10\Omega$ Feeder Impedance $Z = 0.5 + j0.15\Omega$	10	L3	CO2

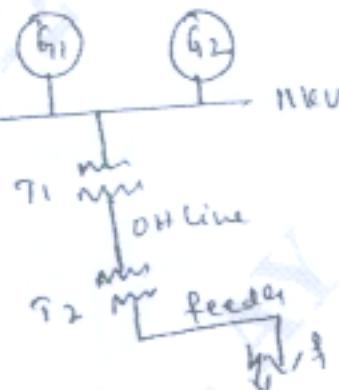


Fig.Q.3(b)

OR

Q.4	a.	Derive the equation of a transient on a transmission line.	10	L2	CO2
	b.	A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15% sub – transient reactance are connected through transformers and a line as shown in the Fig.Q.4(b). The transformers are rated 25 MVA, 11/66 KV and 66 KV/11 KV with leakage reactance of 10% each. The line has a reactance of 10% on a base of 25 MVA, 66 KV. The motor is drawing 15 MW at 0.8 p.f. leading and a terminal voltage of 10.6 KV, when a symmetrical 3Q fault occurs at the motor terminals. Find the subtransient current in the generator, motor and faults.	10	L3	CO2

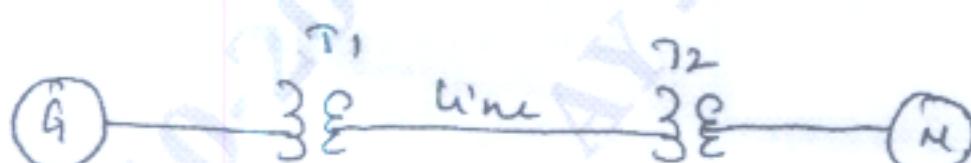


Fig.Q.4(b)

Module – 3

Q.5	a.	What are symmetrical components? How they are useful in the solution of power system?	5	L1	CO3
	b.	Derive an expression for the 3φ complex power in terms of symmetrical components.	5	L2	CO3

c. A 3 phase, star connected load as shown, is connected to a 3 phase supply having a line voltage of 440 volts. Calculate the current in line 'a'.

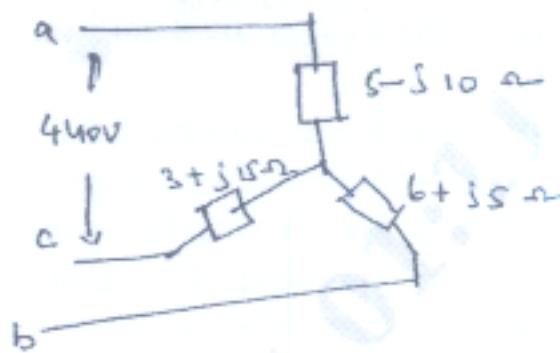
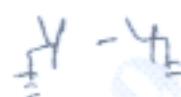



Fig.Q.5(c)

OR

Q.6 a. Draw the zero sequence impedance networks of a transformer for the following connection:

b. Draw the positive, negative and zero sequence network for the power system shown, choose a base of 50 MVA, 220 KV in the 50Ω , T line and mark are reactance's in PU. The ratings of the generator and transformer are:

$G - 1 : 25 \text{ MVA, } 11 \text{ KV } x'' = 20\%$

$G - 2: 25 \text{ MVA, } 11 \text{ KV, } x'' = 20\%$

3ϕ transformer each : 20 MVA, 11/220 KV, $x = 15\%$. The negative sequence reactance of each machine is equal to the subtransient reactance. The zero sequence reactance of each machine is 8%. Assume that the zero sequence reactance of lines are 250% of their positive sequence reactance.

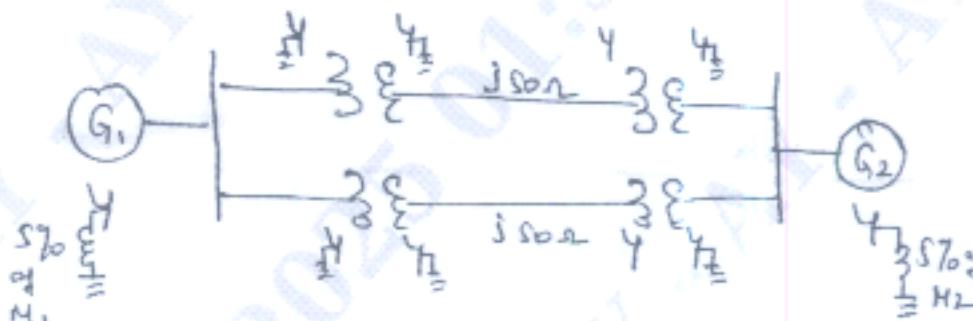


Fig.Q.6(b)

Module - 4

Q.7 a. Derive an expression for fault current when single line to ground fault occurs through a fault impedance z_f in a power system. Draw the sequence network to represent the fault.

b. Derive an expression for fault current when - double line to ground fault through impedance occurs on power systems.

OR

Q.8	<p>A 50 Hz turbo generator is rated 10 MVA, 13.8 KV. It is star connected and solidly grounded and in operation at rated voltage at no-load. It is disconnected from the rest of the system. Its reactance are $x_1 = x_2 = 0.15$ Pu and $x_0 = 0.05$ Pu. Find :</p> <ol style="list-style-type: none"> The ratio of the subtransient line current for a single line to ground fault to the sub-transient line current for a symmetrical 3ϕ fault. The ratio of sub-transient line current for a line to line-fault to the sub-transients current for a symmetrical 3ϕ fault. The Ohm's of inductive reactance to be inserted in the neutral connection of the generator to limit the subtransient line current for a single line to ground fault to that for a 3ϕ fault. 	20	L3	CO4

Module - 5

Q.9	a.	Explain equal area criteria concept when a power system in subjected to sudden loss of one of the parallel lines.	10	L2	CO5
	b.	Define:	5	L1	CO5
	i)	Steady state stability			
	ii)	Transient stability			
	c.	Discuss the methods of improving transient stability.	5	L2	CO5

OR

Q.10	a.	Derive the power angle equation for salient pole machine.	10	L2	CO5
	b.	Derive an expression for the swing equation.	10	L2	CO5
