

Fifth Semester B.E./B.Tech. Degree Examination, June/July 2025

Power Electronics

Max. Marks: 100

*Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks , L: Bloom's level , C: Course outcomes.*

Module – 1			M	L	C
Q.1	a.	With neat sketch, explain the reverse recovery characteristics of a diode.	06	L2	CO1
	b.	A single phase full bridge diode rectifier is supplied from 230 V, 50 Hz source. The load consists of $R = 10 \Omega$. Determine (i) Average output current (ii) Average diode current.	04	L3	CO1
	c.	With neat circuit diagram and waveform, explain the single phase full wave bridge type diode rectifier with R load, derive average and RMS output voltage.	10	L3	CO1
OR					
Q.2	a.	Mention the various characteristics and specifications of switches.	06	L1	CO2
	b.	Explain the significance of freewheeling diode.	04	L2	CO2
	c.	With necessary circuit diagram, waveform and derivation, explain diode circuit with DC source connected to RL load.	10	L2	CO2
Module – 2					
Q.3	a.	With neat circuit diagram, explain steady state and switching characteristics of BJT.	10	L2	CO3
	b.	Give the comparisons between MOSFET and IGBT.	04	L4	CO3
	c.	The bipolar transistor in Fig.Q3(c) below is specified to have β_f in the range of 8 to 40. The load resistance is $R_c = 11 \Omega$. The dc supply voltage is $V_{cc} = 200 \text{ V}$ and the input voltage to the base current is $V_B = 10 \text{ V}$. If $V_{CE(out)} = 1.0 \text{ V}$, $V_{BE(out)} = 1.5 \text{ V}$, find (i) the value of R_B that result in saturation with an ODF of 5 (ii) the β_{forced} and (iii) the power loss in transistor.	06	L3	CO3
<p align="center">Fig.Q3(c)</p>					
OR					
Q.4	a.	With neat circuit diagram, explain steady state and switching characteristics of power MOSFET.	10	L2	CO3

	b.	Explain the importance of providing isolation of gate/base drive from power circuits.	04	L4	CO3
	c.	With a neat circuit diagram, explain how soft switching is implemented with antisaturation control of BJT.	06	L2	CO1

Module – 3

Q.5	a.	Explain the two transistor model of thyristor with neat diagram and derive the expression for anode current.	08	L3	CO2
	b.	A SCR is connected in series with a 0.5 H inductor and 20 Ω resistance. A 100 V DC voltage is applied to this circuit. If latching current of the SCR is 4 MA, find the minimum width of the gate trigger pulse required to properly turn-on the SCR.	04	L3	CO3
	c.	Discuss between series and parallel operation of thyristors with circuit diagram.	08	L4	CO3

OR

Q.6	a.	Explain UJT firing circuit for the SCR.	08	L2	CO1
	b.	Distinguish between (i) Converter grade and Inverter grade SCR (ii) Latching current and Holding current.	04	L4	CO3
	c.	A SCR has a $\frac{di}{dt} = 120 \text{ A}/\mu\text{s}$ and $\frac{dv}{dt}$ of 300 V/ μs . It operates on a 250 V DC source with a load resistance of 10 Ω . Find the suitable values for the components of the snubber circuit.	08	L3	CO2

Module – 4

Q.7	a.	With neat circuit and waveforms, explain the single phase half wave controlled rectifier with RL load, derive the average output voltage.	10	L2 L3	CO3
	b.	List the applications of AC voltage controller.	04	L1	CO1
	c.	A single phase half wave controlled rectifier is used to supply power to 10 Ω load from 230 V, 50 Hz supply at a firing angle of 30. Calculate (i) average o/p V_g (ii) Effective output voltage (iii) Average load current.	06	L3	CO2

OR

Q.8	a.	Explain the single phase full wave AC voltage controller with R load with neat diagram and waveform and derive the RMS output voltage.	10	L2 L3	CO3
	b.	Derive an expression for the RMS value of the output of bidirectional AC voltage controller employing ON-OFF control, with necessary explanations.	10	L3	CO3

Module – 5

Q.9	a.	Explain the working of step-up chopper. Draw the relevant waveforms, derive an expression for average output voltage.	10	L2 L3	CO2
	b.	Classify the different types of chopper circuits and explain working of class E chopper.	10	L4	CO3

OR

Q.10	a.	With circuit diagram and waveform explain three phase bridge inverter. Also derive line to line RMS voltage.	10	L2 L3	CO2
	b.	List the different types of voltage control techniques for single phase inverters. Briefly explain (i) single pulse width modulation (ii) sinusoidal pulse width modulation.	10	L1 L2	CO3
