2366054

USN

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025

Transmission and Distribution

Time, hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

12 61 8 V			-	
16.14	Module – 1	M	L	COL
Q.1 a.	in a line diagram of a typical transmission and distribution	10	L1	CO1
b.	Explain various types of line conductors used for overhead line.	6	L2	CO1
c.	An overhead line has a span of 150 m between level supports. The conductor has a cross – sectional area of 2 cm ² . The ultimate strength is 5000 kg/cm ² and safety factor is 5. The specific gravity of the material is 8.9 gm/cc. The wind pressure is 1.5 kg/m. Calculate the height of the conductor above the ground level at which it should be supported if a minimum clearance of 7 m is to be left between the ground and the conductor.	4	L3	CO1
	OD			
Q.2 a.	Draw a neat diagram of interconnection of component of distribution system and explain.	8	L1	CO1
b.	Define Sag. With usual notations derive an expression for the sag of a transmission line when the supports are at equal level.	8	L1	CO1
c.	Compare pin and suspension insulators.	4	L2	CO2
	Module – 2			
Q.3 a.	The street for inductance of 3 phase un-symmetrically spaced but	8	L2	CO2
b.	Fig. Shows the spacings of a double circuit 3 phase – double circuit overhead line. The conductor radius is 1.3 cm and line is transposed. Calculate the inductance per phase per kilometer.	6	L3	CO2

		The six conductors of a double circuit three phase line are shown in Fig. Q3(c). The diameter of each conductor is 2.5 cm. Find the capacitance to neutral assuming that the line is transposed.	6	L3	
		Fig. Q3(c)			
		OR			
Q.4	a		8	L3	CO3
	b	2 parallel conductors 1 meter apart and 1 cm in diameter, when the material of conductor is i) Copper and ii) Steel of relative permittivity 50. Prove the formula used.	8	L3	CO3
	c.	Compare single circuit and double circuit arrangement of transmission lines.	4	L2	CO3
		Module – 3			
Q.5	a.	Deduce an expression for voltage regulation and transmission efficiency of single phase short transmission line by developing the vector diagrams.	10	L3	CO4
	b.	A 110 KV , 50 Hz , 3 phase transmission line delivers a load of 40 MW at 0.85 lag p.f at the receiving end. The generalized constants of the transmission line are A = D = 0.95 $[\underline{1.4}^{\circ}]$, B = $96[\underline{78}^{\circ}]$ Ω C = 0.0015 $[\underline{90}^{\circ}]$ mho regulation of the line and charging current. Apply nominal T method.	10	L3	CO4
6	_	OR			
2.6	а.	Derive expression for the generalized A, B, C, D constants for equivalent T network.	10	L3	CO4
	b.	Determine the efficiency and regulation of a 3 phase , 100 km , 50 Hz , transmission line delivering 20 MW at a power factor of 0.8 lag and 66 KV to a balanced load. The conductors are of copper , each having resistance of 0.1Ω per km , 1.5 m outside diameter spaced equilaterally 2 meters between centers. Neglect leakage , use normal π method.	10	L2	CO4
		Module – 4			
7		Explain the phenomena of Corona. List the factors affecting Corona.	10	L2	CO
		A 33 KV, 3 phase underground cable, 4 km long uses three core cables. Each of the conductor has a diameter of 2.5 cm and the radial thickness of insulation 0.5 cm. the relative permittivity of the dielectric is 3. Calculate 1. Capacitance of the cable / ph 2. Charging current / phase 3. Total charging KVAR.	10	L3	CO ²

4					
Q.8	: :	a. Explain 1. Digrams. OR			
		Explain 1. Disruptive critical voltage 2. Visual critical voltages 3. Corona loss.	10	1.2	COF
		Total Total Colleges	10	L2	CO5
	l	2. Analyze grading of the			
		Analyze grading of cables using capacitance grading method.	6	L4	CO5
	C	The inner and	U	1.4	COS
		The inner and outer diameters of a cable are 3 cm & 9 cm respectively. The cable is insulated with the two materials having permittivities of 5 and 4 respectively with corresponding maximum permissible stresses of 30 KV/cm and 20 KV/cm respectively. Calculate the radial thickness of each insulating layer and the safe working voltage of the cable.	4	L3	CO5
Ω		Module – 5		1	
Q.9	a.	Explain 1. Radial distribution system	10	L2	CO
		2. Ring main distribution system along with neat diagrams.	10	~~	00.
		, , , , , , , , , , , , , , , , , , , ,			
	b.	Define Reliability. Explain different probability distributions.	10	L2	CO
				~~	
		OR			
Q.10	a.	A two wire distributor 1200 m long is loaded as shown in Fig. Q10(a) 'B'	10	L3	CO
		is the midpoint. The power factors at the two load points refer to the voltage at 'C'. The impedance of each line is (0.10 + j0.2) Ω. Calculate the sending end voltage, current and power factor. The voltage at point 'C' is 220 V. Fig. Q10(a) 60A, 0.9P4 100A, 0.8P4 109			
ŀ		Analyze the effect of disconnection of neutral in 3 phase 4 wire system.	6	L4	СО
c	:.]	Explain any 4 limitations of distribution system.	4	L3	СО