

Fourth Semester B.E. Degree Examination, June/July 2025

Electromagnetic Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Derive the relationship between Cartesian and spherical co-ordinate systems? Parameters. (06 Marks)
- b. Define :
 i) Electric flux density
 ii) Electrical field Intensity
 iii) Volume charge density (06 Marks)
- c. Given that $D = z\rho \cos^2 \phi \ a_z \text{ C/m}^2$, calculate the charge density at $(1, \pi/4, 3)$ and the total charge enclosed by the cylinder of radius 1 m with $-2 \leq z \leq 2$ m. (08 Marks)

OR

- 2 a. Two particles having charges 2 nano-coulomb and 5 nano-coulomb are spaced 80 cm apart. Determine the electric field intensity at a point "A" situated at a distance of 0.5 m from each of the two particles. [Assume bakelite medium with $E_r = 5$] (08 Marks)
- b. Using Gauss's Law obtain an expression for "E" due to infinite sheet of charge with surface charge density $\rho_s \text{ C/m}^2$. (07 Marks)
- c. Transform vector $B = ya_x - xa_y + za_z$ into cylindrical co-ordinates. (05 Marks)

Module-2

- 3 a. Derive an expression for potential difference between points at $\rho = a$ and $\rho = b$ in the field of an infinite line charge with charge density $\rho_L \text{ C/m}$. (06 Marks)
- b. Derive the boundary conditions on E and D at the interface of perfect dielectrics. (10 Marks)
- c. Show that $\oint E \cdot dL = 0$ (04 Marks)

OR

- 4 a. In a certain region, the potential is given by $V = (x^2 + 3y^2 + 9z)$. Find the electric field intensity at point P (1, -2, 3) m. (04 Marks)
- b. Two dipoles with dipole moments $-5a_z \text{ nC/m}$ and $9a_z \text{ nC/m}$ are located at points $(0, 0, -2)$ and $(0, 0, 3)$ respectively. Find the potential at the origin. (08 Marks)
- c. Derive the expression for capacitance of two concentric spherical shells with inner radius R_1 and outer radius R_2 . (08 Marks)

Module-3

- 5 a. State and prove uniqueness theorem. (08 Marks)
- b. A sphere of radius 'a' has the charge distribution $\rho(r) \text{ C/m}^3$, which produces an electric field intensity given by,
 $E_r = Ar^4$, for $r \leq a$,
 $= Ar^2$, for $r > a$,
 Where 'A' is a constant. Find the corresponding charge distribution $\rho(r)$, using Poisson's equation. (12 Marks)

OR

- 6 a. State and explain :
 i) Biot Savart law
 ii) Ampere's circuital law
 iii) Stoke's theorem. (12 Marks)
- b. A circuit carrying a direct current of 5A from a regular hexagon inscribed in a circle of radius 1m. Calculate the magnetic flux density at the center of the current hexagon. Let medium to be free space. (08 Marks)

Module-4

- 7 a. Derive Lorentz force equation and mention its application. (06 Marks)
- b. Discuss the magnetic boundary conditions application to B , H and M at the interface between two different magnetic materials. (10 Marks)
- c. Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of length 60 cm. and diameter 6cm given that medium is air. (04 Marks)

OR

- 8 a. A positive point charge $Q = 20(\text{nc})$ is moving with a velocity of 12×10^6 (m/s) in a direction specified by the unit vector $a_u = -0.48a_x - 0.6a_y + 0.64a_z$
 i) Find the magnitude of vector force exerted on a moving particle by the magnetic field $B = 2a_x - 3a_y + 5a_z$ (MT).
 ii) Find the magnitude of vector force exerted on the moving particle by the electric field. $E = 2a_x - 3a_y + 5a_z$ (KV/m).
 iii) Find the magnitude of vector force if both B and E would be acting together. (10 Marks)
- b. Derive the expression for torque on a rectangular loop carrying current I . (10 Marks)

Module-5

- 9 a. Derive emf equation for
 i) Stationary loop in time varying "B" field (Transformer emf)
 ii) Moving loop in static "B" field (Motional emf). (12Marks)
- b. List Maxwell's equation for time varying field in integral form and point form. (08 Marks)

OR

- 10 a. Derive an expression for the relation between E & H in a conducting medium of lossy dielectrics. (10 Marks)
- b. The electric field in free space is given by $E = 800 \cos [10^8 t - \beta y] a_z$ V/m.
 Find :
 i) β ii) λ and iii) H at the point $P(1, 1.5, 0.4)$ at $t = 8$ ns. (10 Marks)

* * * * *