BEE303

Third Semester B.E./B.Tech. Degree Examination, June/July 2025 Analog Electronic Circuits

Time This Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	How can a diode circuit be implemented to represented parallel independent clipper, illustrate with circuit equations and waveforms.	10	L2	CO1
	b.	The emitter bias circuit has the following specifications:	10	L3	CO ₁
		$I_{cQ} = \frac{1}{2}I_{sat}$, $I_{sat} = 8$ mA, $V_C = 18V$, $V_{CC} = 18V$, $\beta = 110$. Determine R_C , R_E and R_B .			
		OR			
Q.2	а.	Find the output voltage V out of the clipper circuit shown assuming. i) Diode are ideal ii) $V_{on} = 0.7V$. For both cases, $R_f = 0$. Sketch the output waveforms.	10	L3	CO1
	b.	Explain the voltage divider bias circuit and derive I _c and V _{CE} and terminal voltages.	10	L2	CO2
		Module – 2			
Q.3	a.	With the help of small signal low frequency transistor model, draw generalized model of the amplifier.	10	L2	CO3
	b.	For the networks shown in below, find – I_E , r_e , Z_i , Z_0 , A_V , A_i . 10.47 12.7 12.7 13.8 14.0 15.00(1)	10	L3	CO3
		Fig.O3(b)			
		Fig.Q3(b) OR			
Q.4	a.		10	L2	CO3

BEE303

		Module – 3			
Q.5	a.	Derive Z_{in} and Z_0 of darlington amplifier also derive A_i and A_V .	10	L4	CO3
	b.	Explain cascade amplifier and explain the overall gain equation.	10	L2	CO3
		OR			
Q.6	a.	For a transformer coupled amplifier with $V_{CC} = 12V$, $C_{in} \rightarrow \infty$, $\beta = 100$, $V_{BE} = 0.7V$, $A_i = 0$. Find power supplied to load and power required from supply.	10	L3	CO3
	b.	Write important characteristics of: i) Darlington emitter follower ii) Feedback amplifier.	10	L2	CO3
		Module – 4			
Q.7	a.	Explain push-pull circuit with a circuit and derive A _v .	10	L2	CO3
	b.	Draw DC equivalent circuit for class C amplifier and explain.	10	L2	CO3
		OR			
Q.8	a.	With a neat circuit diagram explain RC phase shift oscillator and derive equation for frequency.	10	L2	CO3
	b.	The turned collector oscillator circuit used in the local oscillator of radio makes use of LC turned circuit with L1 = 58.6μ H, C ₁ = 300 pf calculate oscillation frequencies.	5	L3	CO
	c.	What are the advantages and disadvantages of using crystal oscillator?	5	L2	CO
	'	Module – 5	•		
Q.9	a.	Explain the operation of JFET.	10	L2	CO3
	b.	Derive g _m for n-channel JFET and draw its characteristic curve.	6	L4	CO3
	c.	What are the advantages of FET over BJT?	4	L2	CO3
		OR			
Q.10	a.	With a neat circuit diagram for FET – voltage divider bias – derive I_D and $V_{GS(min)}$, $V_{GS(max)}$.	10	L3	CO3
	b.	Derive i_d , μ , g_m for FET amplifier.	10	L3	CO3

* * * * *