

	15	13.5	1.	1		_	 	
1	USN	2-2	3					BEE304

Third Semester B.E./B.Tech. Degree Examination, June/July 2025 Transformers and Generators

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

			_		
		Module 1	M	L	C
Q.1	a.	- The state equivalent encultivates of a shighe phase transformer	10	L2	CO1
		referred to primary side. Indicate all the parameters in each development			
		stage.			
	b.	Find the all day efficiency of single phase transformer having maximum	10	L3	CO1
		efficiency of 98% at 15 KVA at UPF and loaded as follows:			
		12 hours – 2 KW at 0.5 p.f lagging			
		6 hours – 12 KW at 0.8 p.f lagging			
		6 hours – No load.			
		OR •			
Q.2	a.	Explain the open circuit and short circuit test of a single phase transformer	10	L2	CO1
		with neat circuit diagram. Show the calculation of efficiency at any load.			
	b.		10	L4	CO1
		with lagging, leading and unity power factor.			
		Module – 2			
Q.3	a.	Explain with the help of connection and phasor diagram how SCOTT	10	L2	CO ₂
		connections are used to obtain two phase from three phase supply.			002
	b.	A 400 KVA load at 0.7 pf lagging is supplied by three phase transformers	10	L3	CO2
		connected in Δ - Δ . Each of Δ - Δ transformer is rated at 200 KVA,	•		002
		2300V/230V. If one defective transformer is removed from service,			
		calculate for V–V connection.			
		i) The KVA load carried by each transformer			
		ii) Percent rated load carried by each transformer			
		iii) Total KVA ratings of two transformer bank in V-V			
		iv) Ratio of V-V bank to Δ - Δ bank transformer ratings.			
		Table of V Value of E bank transferred ratings.			
		OR			
Q.4	a.	10	L4	CO2	
דיץ	а.	Analyze the parallel operation if a transformer with unequal voltage ratio. And obtain the expression fro current shared by two transformers.	10	L-7	002
	b.	Analyze the current distribution in step up and step down auto transformer	10	L4	CO
	υ.	with the help of neat diagram. And derive the expression for saving of	10	1.4	
		copper in an auto transformer.			
		copper in an auto transformer.			
		Module – 3			
0.5			10	12	CO2
Q.5	a.	Derive an EMF equation of an alternator. Also give the expression for pitch	10	L3	CO3
		factor and distribution factor.	10	Y 2	000
	b.	A 3 phase star connected alternator is rated at 1600 KVA, 13500 volts. The	10	L3	CO3
		armature resistance and synchronous reactance are 1.5 Ω and 30 Ω			
		respectively/phase calculate the percentage regulation for a load of 1280			
		KW at a pf 0.8 lag, UPF 0.8 load.			
		1 of 2			
		NO.			

		OR									
	-	the supression for EMF induced (Egh) interns of terminal voltage,	10	L4	CO ₃						
2.6	a.	lead current armature resistance, synchronous reactance along with phasor									
		diagram for lagging leading and unity power factor load.									
	b.	The open and short circuit test reading for a 3-\$\phi\$ star commented									
		1000 KVA, 2000 V, 50 Hz synchronous generator are:									
		Field amps 10 20 25 30 40 50									
		OC terminal voltage 800 1500 1760 2000 2350 2600									
		SC armature current - 200 250 300									
		in amps									
		2 O/alega Draw the characteristics									
		The armature effective resistance is 0.2 Ω /phase. Draw the characteristics curves and estimate the full load percentage regulation for 0.8 p.f leading.									
		curves and estimate the full load percentage regulation for the parties of									
		Module – 4									
Q.7	a.	Explain the lamp dark and lamp bright method of synchronization of	10	L2	CO4						
		alternators. Also mention the necessary conditions.	10	L2	CO4						
	b.	Discuss the concept of two reaction theory in a salient pole synchronous	10								
		machine with the help of phasor diagram.									
		OR									
Q.8	a.	Analyze the electrical load diagram of a synchronous generator connected	10	L4	CO4						
Q		to infinite bus bar and draw the electrical load diagram.	10	T 4	CO4						
	b.	A 400 V, 50 Hz delta connected alternator has a direct axis reactance of	10	L4	004						
		0.1Ω and a quadrate axis reactance of 0.07Ω /phase. The armature resistance									
		is negligible the alternate is supplying 1000 A at 0.8 pf lagging. i) Find the excitation emf neglecting saliency and assuming $X_S = X_d$									
		i) Find the excitation emf neglecting saliency and assuming As - Ad ii) Find the excitation emf, by taking saliency into account.									
		Module – 5	10	L3	COS						
Q.9	a.	Sketch basic components block diagram of a wind electric system. Discuss	10	LS	100						
	+	all the components in wind electric system. Sketch basic elements of a photo voltaic cell and explain the working of PV	10	L3	COS						
	b.	cell.									
		OR									
		OR .	10	T 4							
Q.10	0 a.	Sketch horizontal and vertical axis wind power generation. Explain both in	10	L3	CO						
Q.10	4_	Sketch horizontal and vertical axis wind power generation. Explain both in detail.									
Q.10	0 a.	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List:	10								
Q.10	4_	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS.									
Q.10	4_	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List:									
Q.10	4_	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS.									
Q.10	4_	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS.									
Q.10	4_	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS.									
Q.10	4_	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS.									
Q.10	4	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS.									
Q.10	4	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS. ii) Advantages and disadvantages of solar power system.									
Q.10	4	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS. ii) Advantages and disadvantages of solar power system.									
Q.10	4	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS. ii) Advantages and disadvantages of solar power system.									
Q.10	4	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS. ii) Advantages and disadvantages of solar power system.									
Q.10	4	Sketch horizontal and vertical axis wind power generation. Explain both in detail. List: i) Advantages and disadvantages of WECS. ii) Advantages and disadvantages of solar power system.									