

CBCS SCHEME

USN

18CS54

Fifth Semester B.E. Degree Examination, June/July 2025

Automata Theory and Computability

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing **ONE** full question from each module.

Module-1

1 a. Define the following terms with example : i) Alphabet ii) Power of an alphabet
 iii) String iv) Language v) Kleene star. (05 Marks)

b. Design DFSM for each of the following languages :
 i) $L = \{W : W \text{ has even number of } a's \text{ and even number of } b's\}$.
 ii) $L = \{W : |W| \bmod 5 \neq 0\}$ on $\Sigma = \{a, b\}$. (10 Marks)

c. Mention the differences between DFSM , NFSM and ϵ - NFSM. (05 Marks)

OR

2 a. Define Distinguishable and Indistinguishable states. Minimize the following DFSM.

δ	$\rightarrow A$	B	$*C$	D	E	F	G	H
0	B	G	A	C	H	C	G	G
1	F	C	C	G	F	G	E	C

b. Convert the following NDFSM to DFSM. Refer Fig. Q2(b). (10 Marks)

(10 Marks)

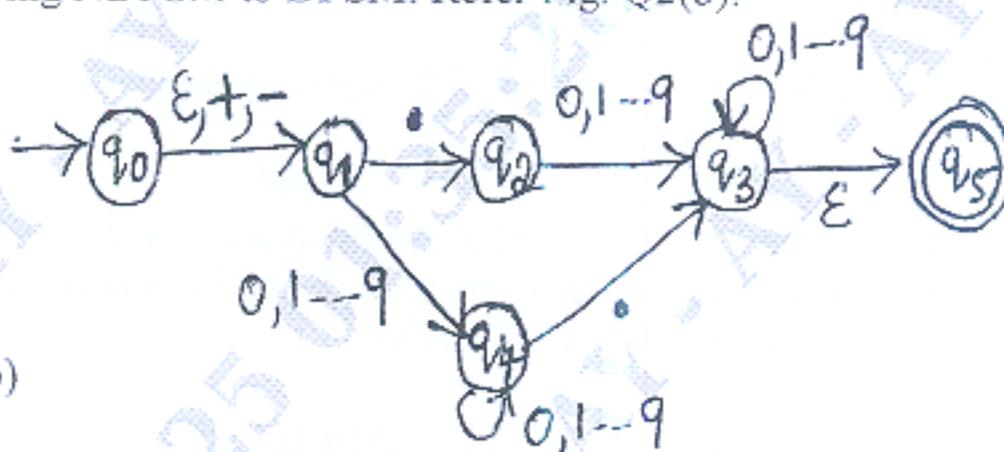


Fig. Q2(b)

Module-2

3 a. Define Regular Expression. Write Regular Expression for the following languages :
 i) $L = \{a^{2n} b^{2m} \mid n \geq 0, m \geq 0\}$ ii) $L = \{a^n b^m \mid n \geq 4, m \leq 3\}$
 iii) $L = \{W \in \{a, b\}^* : \text{strings with alternate } a's \text{ and } b's\}$. (08 Marks)

b. Obtain ϵ – NDFSM for the regular expression $a^* + b^* + c^*$. (06 Marks)

c. Build a Regular expression from an FSM. Refer Fig. Q3(c). (06 Marks)

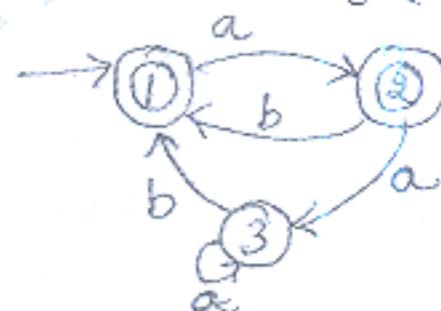


Fig. Q3(c)

OR

4 a. State and prove Pumping lemma theorem for regular languages. Show that $L = \{WW^R \mid W \in (0+1)^*\}$ is not regular. (10 Marks)

b. Show that if L_1 and L_2 are regular, then $L_1 \cup L_2$, $L_1 \cdot L_2$ and L^* are also regular. (06 Marks)

c. Write Regular Grammar & FSM for the language $L = \{W \in \{a, b\}^* : W \text{ ends with Pattern } aaaa\}$. (04 Marks)

Module-3

5 a. Define CFG and design a CFG for the following Languages :

- $L = \{a^n b^{n+2} : n \geq 0\}$
- $L = \{WW^R \mid W \in (a, b)^*\}$
- $L = \{0^i 1^j \mid i \neq j, i \geq 0 \text{ and } j \geq 0\}$. (10 Marks)

b. Define CNF. Convert the following CFG into CNF.
 $S \rightarrow aACa \quad A \rightarrow B \mid a \quad B \rightarrow C \mid c \quad C \rightarrow c \quad C \mid \epsilon$ (10 Marks)

OR

6 a. Design a PDA for the language $L = \{a^n b^n \mid n \geq 0\}$ and show the moves made by PDA for the string aaabbb. (10 Marks)

b. Define Leftmost derivation, Rightmost derivation and Parse tree. Consider the grammar.
 $E \rightarrow E + E \quad E \rightarrow E * E \quad E \rightarrow E - E \quad E \rightarrow \text{id}$. Obtain LMD, RMD and Parse tree for the string id + id * id. (10 Marks)

Module-4

7 a. Design a TM for the language $L = \{1^n 2^n 3^n \mid n \geq 1\}$. Show that 112233 is accepted by ID. (12 Marks)

b. Explain any two techniques for TM construction. (08 Marks)

OR

8 a. Demonstrate the model of Linear bounded automata. (08 Marks)

b. With a neat diagram, explain the working of Multitape Turing M/C. (08 Marks)

c. Define and explain DTM and NDTM. (04 Marks)

Module-5

9 a. Explain the following with example :

- Decidability
- Decidable Languages
- Undecidable languages. (12 Marks)

b. Explain Halting problem in TM. (08 Marks)

OR

10 a. Explain Quantum computers. (07 Marks)

b. Explain P and NP classes. (07 Marks)

c. Write applications of TM (06 Marks)

* * * * *