

--	--	--	--	--	--	--

Third Semester B.E./B.Tech. Degree Examination, June/July 2025

Operating Systems

Topic: 3 hrs.

Max. Marks: 100

*Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks , L: Bloom's level , C: Course outcomes.*

Module – 1			M	L	C								
Q.1	a.	With neat diagram, Explain abstract view of the components of a computer system.	6	L3	CO1								
	b.	With neat diagram, explain virtual, non virtual and VM ware architecture.	8	L3	CO1								
	c.	Explain with neat diagram Dual-Mode operation.	6	L3	CO1								
OR													
Q.2	a.	Explain types of system calls provided by operating system.	6	L3	CO1								
	b.	Explain with neat diagram simple structure of MS-DOS layer structure and unix system structure.	8	L3	CO1								
	c.	Explain operating-system services.	6	L3	CO1								
Module – 2													
Q.3	a.	Explain process state with diagram.	5	L2	CO2								
	b.	What do you mean by interprocess communication? Explain two model of interprocess communication.	9	L2	CO2								
	c.	What are three types of multithreading models? Explain.	6	L2	CO2								
OR													
Q.4	a.	What do you mean by thread libraries? Discuss threading issues.	5	L2	CO2								
	b.	Consider the following set of four process with length of CPU burst given in MS:	10	L2	CO2								
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th style="text-align: center;">Process</th> <th style="text-align: center;">Burst time</th> </tr> <tr> <td style="text-align: center;">P₁</td> <td style="text-align: center;">24</td> </tr> <tr> <td style="text-align: center;">P₂</td> <td style="text-align: center;">3</td> </tr> <tr> <td style="text-align: center;">P₃</td> <td style="text-align: center;">3</td> </tr> </table> Compute the waiting time and average turn around time for the above process using FCFS scheduling algorithm.	Process	Burst time	P ₁	24	P ₂	3	P ₃	3			
Process	Burst time												
P ₁	24												
P ₂	3												
P ₃	3												
	c.	With diagram explain SMT architecture.	5	L2	CO2								
Module – 3													
Q.5	a.	What is critical section problem? Explain Peterson's solution and synchronization hardware solution for critical section problem.	10	L3	CO3								
	b.	Write a code for readers-writers process.	6	L3	CO3								
	c.	Discuss the structure of philosopher.	4	L3	CO3								

OR

Q.6	a.	What are the four necessary condition for deadlock occurrence?	4	L3	CO3
	b.	Explain with neat diagram resource-allocation graph for deadlock avoidance.	6	L3	CO3
	c.	Consider the following snapshot of the system:	10	L3	CO4

Process	Allocation			Max			Available		
	A	B	C	A	B	C	A	B	C
P ₀	0	1	0	7	5	3	3	3	2
P ₁	2	0	0	3	2	2			
P ₂	3	0	2	9	0	2			
P ₃	2	1	1	2	2	2			
P ₄	0	0	2	4	3	3			

Determine whether the system is safe using Banker's algorithm. If the request for P₁ arrives for (1, 0, 2) can the request be granted immediately.

Module – 4

Q.7	a.	Explain the following with respect to dynamic storage allocation: i) First fit ii) Best fit iii) Worst fit	3	L3	CO4
	b.	What is Paging? Explain with neat diagram paging hardware and paging model of logical and physical memory.	10	L3	CO4
	c.	With neat diagram, explain segmentation hardware.	7	L3	CO4

OR

Q.8	a.	With neat diagram, explain demand paging system.	6	L3	CO4
	b.	Consider the page reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for a memory with 3 frames. Determine the number of page faults using FIFO, optimal and LRU replacement algorithms. Which algorithm is most efficient?	9	L3	CO1
	c.	Write a note on copy_on_write technique.	5	L3	CO1

Module – 5

Q.9	a.	Explain bit vector and linked free-space list on disc.	6	L3	CO5 CO6
	b.	Explain with neat diagram contiguous allocation and indexed allocation.	8	L3	CO5 CO6
	c.	With neat diagram single level and two level directory structure.	6	L3	CO5 CO6

OR

Q.10	a.	Discuss network attached storage.	5	L3	CO5 CO6
	b.	A disk drive has 200 cylinders 0 to 199. Head starts at 53 to serve the request queue: 98, 183, 37, 122, 14, 124, 65, 67. Draw disk head schedule diagram and explain for FCFS, SSTF, C-SCAN and C-LOCK.	10	L3	CO5 CO6
	c.	Explain the concept of access matrix.	5	L3	CO5 CO6
