VISVESVARAYATECHNOLOGICALUNIVERSITY BELAGAVI

MATHEMATICS HANDBOOK

III and IV Semester BE Program

(Common to all Lateral Entry MATDIP Students)

(FOR SYLLABUS SCHEMES 2002/2006/2010/2015/2017/2018)

Complex Number

A number of the form a + ib, where a and b are real numbers, is called a complex number, a is called the real part and b is called the imaginary part of the complex number.

Equality of complex numbers $a + ib = c + id \Leftrightarrow a = c$ and b = d

Addition of complex numbers (a + ib) + (c + id) = (a + c) + i(b + d)

Subtraction of complex numbers (a + ib) - (c + id) = (a - c) + i(b - d)

Multiplication of complex numbers (a + ib). (c + id) = (ac - bd) + i(ad + bc)

Division of complex numbers $\frac{a+ib}{c+id} = \frac{a+ib}{c+id} \cdot \frac{c-id}{c-id} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$

Polar form of complex numbers $a + ib = r(\cos\theta + i\sin\theta)$

For any non-zero complex number z=a+ib ($a\neq 0,b\neq 0$), there exists the complex number $\frac{a}{a^2+b^2}+i\frac{-b}{a^2+b^2}$, denoted by $\frac{1}{z}$ or z^{-1} called multiplicative inverse of z such that $(a+ib)\frac{a}{a^2+b^2}+i\frac{-b}{a^2+b^2}=1+i0=1$

For any integer $k, i^{4k} = 1, i^{4k+1} = i, i^{4k+2} = -1, i^{4k+3} = -i$.

The conjugate of the complex number z = a + ib, denoted by \bar{z} , is given by

$$\bar{z} = a - ib$$
.

VISVESVARAYATECHNOLOGICALUNIVERSITY BELAGAVI

MATHEMATICS FORMULA HANDBOOK

The plane having a complex number assigned to each of its point is called the complex plane or the Argand plane.

The Argand plane, the $|x + iy| = \sqrt{x^2 + y^2}$.

nth Derivatives of Standard Functions:

$$D^{n}[(ax+b)^{m}] = m(m-1)(m-2)...(m-n+1)(ax+b)^{m-n}.a^{n}.$$

$$D^n[(ax+b)^n] = n! a^n$$

$$D^n[x^n] = n!$$

$$D^{n} \left[\frac{1}{ax+b} \right] = \frac{(-1)^{n} n! \, a^{n}}{(ax+b)^{n+1}}$$

$$D^{n}[\log(ax+b)] = \frac{(-1)^{n-1}(n-1)! \, a^{n}}{(ax+b)^{n}}$$

$$D^n[a^{mx}] = a^{mx}(mloga)^n$$

$$D^n[e^{ax}] = a^n e^{ax}$$

$$D^{n}[\sin(ax+b)] = a^{n}\sin(ax+b+\frac{n\pi}{2})$$

$$D^{n}[\cos(ax+b)] = a^{n}\cos(ax+b+\frac{n\pi}{2})$$

$$D^{n}[e^{ax}\sin(ax+b)] = (a^{2}+b^{2})^{n/2}e^{ax}\sin\left(bx+c+ntan^{-1}\left(\frac{b}{a}\right)\right)$$

$$D^{n}[e^{ax}\cos(ax+b)] = (a^{2}+b^{2})^{n/2}e^{ax}\cos\left(bx+c+ntan^{-1}\left(\frac{b}{a}\right)\right)$$

Polar Coordinates and Polar Curves:

Angle between Polar vector and Tangent

$$tan\emptyset = r\frac{d\theta}{dr} \text{ or } cot\emptyset = \frac{1}{r}\frac{dr}{d\theta}$$

Angle of Intersection of the Curves

$$|\emptyset_1 - \emptyset_2| = tan^{-1} \left\{ \left| \frac{tan\emptyset_1 - tan\emptyset_2}{1 + tan\emptyset_1 \cdot tan\emptyset_2} \right| \right\}$$

Orthogonal Condition

$$|\emptyset_1 - \emptyset_2| = \frac{\pi}{2} \text{ or } tan \emptyset_1. tan \emptyset_2 = -1$$

Series Expansion:

Taylor's Series expansion about the point x = a

$$y(x) = y(a) + \frac{(x-a)^{1}}{1!}y'(a) + \frac{(x-a)^{2}}{2!}y''(a) + \frac{(x-a)^{3}}{3!}y'''(a) + \cdots$$

VISVESVARAYATECHNOLOGICALUNIVERSITY BELAGAVI

MATHEMATICS FORMULA HANDBOOK

Maclaurian's Series expansion about the point x = 0

$$y(x) = y(0) + \frac{x^1}{1!}y'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y''''(0) + \cdots$$

Euler's theorem on Homogeneous Function and Corollary

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = n\frac{f(u)}{f'(u)}$$

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xyy^{2} \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u$$

Composite Function

If
$$z = f(x, y)$$
 and $x = \emptyset(t)$, $y = \psi(t)$ then $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$

If
$$z = f(x, y)$$
 and $x = \emptyset(u, v)$, $y = \psi(u, v)$ then

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \text{ and } \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

If
$$u = f(r, s, t)$$
 and $r = g(x, y, z)$, $s = h(x, y, z)$, $t = i(x, y, z)$ then

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x},$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r}\frac{\partial r}{\partial y} + \frac{\partial u}{\partial s}\frac{\partial s}{\partial y} + \frac{\partial u}{\partial t}\frac{\partial t}{\partial y}, \qquad \qquad \frac{\partial u}{\partial z} = \frac{\partial u}{\partial r}\frac{\partial r}{\partial z} + \frac{\partial u}{\partial s}\frac{\partial s}{\partial z} + \frac{\partial u}{\partial t}\frac{\partial t}{\partial z}$$

VISVESVARAYATECHNOLOGICALUNIVERSITY BELAGAVI

MATHEMATICS FORMULA HANDBOOK

Jacobians
$$J = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$
 and $\frac{\partial(u,v,w)}{\partial(x,y,z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$

Reduction Formulae

$$\int_0^{\frac{\pi}{2}} \cos^n x dx = \int_0^{\frac{\pi}{2}} \sin^n x dx = \begin{cases} \frac{(n-1)(n-3)(n-5) \dots 1}{n(n-2)(n-4) \dots 2} \frac{\pi}{2} & \text{when n is even} \\ \frac{(n-1)(n-3)(n-5) \dots 3}{n(n-2)(n-4) \dots 1} & \text{1 when n is odd} \end{cases}$$

$$\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx = \begin{cases} \frac{(m-1)(m-3) \dots (n-1)(n-3) \dots \pi}{(m+n)(m+n-2)(m+n-4) \dots 2} & \text{when m \& n is even} \\ \frac{(m-1)(m-3) \dots (n-1)(n-3) \dots}{(m+n)(m+n-2)(m+n-4) \dots} & \text{otherwise} \end{cases}$$

Multiple Integrals

Area $A = \iint_A dxdy$ - Cartesian form

Area $A = \iint_A r dr d\theta$ - Polar form

Volume $V = \iiint_A dxdydz$ - Cartesian form

Volume $V = \iint_A z dx dy$ – by double integral

Gamma Function: $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx = 2 \int_0^\infty e^{-t^2} t^{2n-1} dt$

Beta Function:
$$\beta(m,n) = \int_0^1 x^{n-1} (1-x)^{m-1} dx = 2 \int_0^{\frac{\pi}{2}} \sin^{2n-1}\theta \cos^{2m-1}\theta d\theta$$

Beta and Gamma relation
$$\beta(m,n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$
 and $\Gamma(1/2) = \sqrt{\pi}$.

Vector Calculus

Position Vector $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$

Magnitude
$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

Dot Product of unit vectors $\hat{i} \cdot \hat{i} + \hat{j} \cdot \hat{j} + \hat{k} \cdot \hat{k} = 1$ and $\hat{i} \cdot \hat{j} + \hat{j} \cdot \hat{k} + \hat{k} \cdot \hat{i} = 0$

Cross Product of unit vectors $\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$ and $\hat{\imath} \times \hat{\jmath} = \hat{k}$, $\hat{\jmath} \times \hat{k} = \hat{\imath}$, $\hat{k} \times \hat{\imath} = \hat{\jmath}$.

Angle between two vectors $cos\theta = \frac{\vec{A}.\vec{B}}{|\vec{A}||\vec{B}|}; sin\theta = \frac{|\vec{A} \times \vec{B}|}{|\vec{A}||\vec{B}|}$

Unit vector
$$\hat{A} = \frac{\vec{A}}{|\vec{A}|}$$

Velocity
$$\vec{V} = \frac{ds}{dt}$$

Acceleration $\vec{a} = \frac{d^2s}{dt^2}$

For any vectors $\vec{A} = (a_1\hat{i} + b_1\hat{j} + c_1\hat{k}), \vec{B} = (a_2\hat{i} + b_2\hat{j} + c_2\hat{k})$ &

$$\vec{C} = (a_3\hat{\imath} + b_3\hat{\jmath} + c_3\hat{k})$$

Dot product of two vectors $\vec{A} \cdot \vec{B} = a_1 a_2 + b_1 b_2 + c_1 c_2$

Cross product of two vectors
$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product
$$\vec{A}$$
. $(\vec{B} \times \vec{C}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

Vector Calculus

Velocity
$$\vec{v}(t) = \frac{d\vec{r}}{dt}$$

Acceleration
$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

The unit tangent vector
$$\hat{T} = \frac{\frac{d\vec{r}}{dt}}{\left|\frac{d\vec{r}}{dt}\right|}$$

Angle between the tangents
$$cos\theta = \frac{\overrightarrow{T_1}.\overrightarrow{T_2}}{|\overrightarrow{T_1}||\overrightarrow{T_2}|}$$

Component of velocity $C.V = \vec{v}.\hat{n}$, where \hat{n} is the unit vector

Component of accelerations $C.A = \vec{a}.\hat{n}$

Tangent component of acceleration $T.C.A = \vec{a}.\vec{v}/|\vec{v}|$

Normal Component of acceleration:

$$N.C.A = \left| \vec{a} - (tangential\ component) \times \left(\vec{v} / |\vec{v}| \right) \right|$$

Gradient of
$$\emptyset$$
: $grad \emptyset = \nabla \emptyset = \frac{\partial \emptyset}{\partial x} \hat{\imath} + \frac{\partial \emptyset}{\partial y} \hat{\jmath} + \frac{\partial \emptyset}{\partial z} \hat{k}$

Unit vector normal to the surface: $\hat{n} = \frac{\nabla \emptyset}{|\nabla \emptyset|}$

Directional derivative along vector \overrightarrow{n} is $D.D = \nabla \emptyset. \hat{n}$

Angle between the surfaces $cos\theta = \frac{\nabla \emptyset_1 . \nabla \emptyset_2}{|\nabla \emptyset_1| |\nabla \emptyset_2|}$

Divergence of vector field $\vec{F} = f_1 i + f_2 j + f_3 k$

$$\overrightarrow{div}\overrightarrow{F} = \nabla \cdot \overrightarrow{F} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

Curl of vector field
$$\vec{F}$$
: $\operatorname{curl} \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}$

Solenoidal vector field: $div\vec{F} = \nabla \cdot \vec{F} = 0$

Irrotational vector field: $curl\vec{F} = \nabla \times \vec{F} = 0$

List of vector identities

$$curl(grad\emptyset) = \nabla \times \nabla \emptyset = 0$$

$$div(curl\vec{F}) = \nabla \cdot (\nabla \times \vec{F}) = 0$$

$$div(\vec{\varphi}\vec{F}) = \vec{\varphi}(div\vec{F}) + grad\vec{\varphi}.\vec{F}$$

$$curl(\vec{\varphi}\vec{F}) = \vec{\varphi}(curl\vec{F}) + grad\vec{\varphi} \times \vec{F}$$

Linear Algebra

Inverse of square matrix
$$A$$
: $A^{-1} = \frac{(adjA)}{|A|}$

Rank of a matrix A: The number of non-zero rows in the echelon form of A is equal to rank of A.

Normal form of a matrix:
$$\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$

Gauss Elimination method

The system is reduced to upper triangular system from which the unknowns are found by back substitutions.

Eigenvalues

Roots of the characteristic equation $|A - \lambda I| = 0$.

Eigen Vectors

Non-zero solution $x = x_i$ of $|A - \lambda I|x = 0$.

Diagonal form

$$D = P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Nature, Rank and Index of Quadratic forms:

- **Positive-definite** if all the Eigen values of *A* are positive.
- **Positive-semi definite** if all the Eigen values of *A* are non-negative and at least one of the eigenvalues is zero.
- **Negative-definite** if all the Eigen values of A are negative.
- **Negative-semi definite** if all the Eigen values of *A* are negative and at least one of the Eigen values is zero.
- **Indefinite** if the matrix *A* has both positive and negative eigenvalues.
- **Rank** the number of non-zero terms.
- **Index** the number of positive terms.
- **Signature** the number of positive terms minus the number of negative terms.