

Discrete Mathematics and Graph Theory

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 7\}$, $B = \{4, 5, 6, 7\}$ and $C = \{1, 3, 6\}$. Compute the following: (i) $\overline{A \cup C}$ (ii) $\overline{A} \cap \overline{B}$ (iii) $A \cap B \cap C$ (iv) $B - A$ (v) $A - B$	6	L1	CO1
	b.	Let $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{6, 7, 8, 9, 10\}$ and $f: A \to B$ be a function defined by $f = \{(1,7)(2,7)(3,8)(4,6)(5,9)(6,9)\}$. Determine $f^{-1}(6)$ and $f^{-1}(9)$. Also if $B_1 = \{7, 8\}$, $B_2 = \{8, 9, 10\}$ then find $f^{-1}(B_1)$ and $f^{-1}(B_2)$.	7	L2	CO1
	c.	Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$.	7	L2	CO1
	1	OR	1		
Q.2	a.	For any two sets A and B, prove the Demorgan's laws.	6	L1	CO1
	b.	State pigeon-hole principle. Show that if 50 books in a library contain a total of 27551 pages, one of the books must have atleast 552 pages.	7	L2	CO1
	c.	In a class of 52 students, 30 are studying C++, 28 are studying pascal and 13 are studying both languages. How many in this class are studying at least one of these languages? How many are studying neither of these languages?	7	L2	CO1
		Module – 2			
Q.3	a.	Define tautology. Show that $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology	7	L2	CO2
	b.	Write the converse, inverse and the contra positive of the conditional statement: "If oxygen is a gas then Gold is compound".	6	L2	CO2
	c.	Prove the following is valid argument: $ \begin{array}{c} p \to r \\ \sim p \to q \\ \underline{q \to s} \\ \vdots \sim r \to s \end{array} $	7	L2	CO2
	163	Land to the state of the state		L	
Q.4	a.	OR Prove the following using the laws of logic:	7 ·	L2	CO2
		$p \to (q \to r) \Leftrightarrow (p \land q) \to r$			
	b.	Negate and simplify: (i) $\forall x, [p(x) \land \sim q(x)].$ $\exists x, [\{p(x) \lor q(x)\} \rightarrow r(x)].$	6	L2	CO2
	c.	Give the direct proof of the following statement "If n is an odd integer, then n^2 is odd."	7	L2	CO2
		Module – 3			
Q.5	a.	Define graph and explain the types of graph.	8	L1	CO3

	b.	Prove that the number of vertices of odd degree in a graph is always even.	6	L2	CO3
	c.	Define isomorphic graph and verify the following graphs are isomorphic or	6	L2	CO3
		not.	15 32		*
		h	1		7
					- 31
		$a \left\langle \right\rangle_{d}$			
		c'/ \e'		1-4	
		f e			
		$a' \stackrel{\checkmark}{\longleftarrow} d'$			
		f'			
		OR			
Q.6	a.	Explain the following graphs:	10	L1	CO3
		(i) Bi- partite graph (ii) Sub graphs (iii) Walk (iv) Path			
		6,27			
	b.	Prove that a simple graph with n vertices and K components can have at	10	L2	CO3
		most (n-k)(n-k+1)/2 edges.			
0.5		Module – 4	10	1.2	CO
Q.7	a.	State and prove necessary condition of a graph to be a Euler graph.	10	L2	CO4
	b.	List and explain the different operations on graph.	10	L2	CO ₄
		OR			
Q.8	a.	Define digraph. Find the indegree and outdegree of the following graph:	8	L2	CO ₄
		v_1 v_2			
		v_3			
		\ T			
		\bullet_{v_4}			
		v_6			
	b.	Illustrate the travelling salesman problem using a graph.	6	L2	CO ₄
	c.	List and explain different digraphs and binary relations.	6	L2	CO ₄
		Module – 5			
Q.9	a.	Prove that every tree with two or more vertices is 2- Chromatic	10	L2	COS
	b.	Explain the following for chromatic polynomial:	10	L2	COS
	l ss	(i) Finding a maximal independent set.			
		(ii) Finding all maximal independent set.			
		OR	,		
Q.10	a.	Prove that the vertices of every planar graph can be properly colored with	10	L2	CO:
		five colors.			
	b.	Explain the Greedy coloring algorithm.	10	L2	COS
