

Reg. No.								
----------	--	--	--	--	--	--	--	--

II Semester M.C.A. Degree Examination December - 2024

COMPUTER SCIENCE

Operating Systems

(CBCS Scheme Y2k20)

Paper: 2MCA1

Maximum Marks: 70

Time: 3 Hours

Instructions to Candidates:

- 1. Answer any Five questions From Part A.
- 2. Answer any Four sub questions from Part B.

PART-A

Answer any Five questions:

 $(5 \times 6 = 30)$

- 1. Define operating system. Explain the functions of operating system.
- 2. Explain dual mode operation with a neat diagram.
- 3. What are system calls? Briefly point out its types.
- 4. What is Deadlock? Explain the necessary conditions for deadlock to occur.
- 5. What is thrashing? How can it be controlled?
- Describe both internal and external fragmentation problems encountered in a contiguous memory allocation scheme.
- 7. Draw the logical view of segmentation and explain.
- 8. Write the Need and Goals of protection in OS.

PART-B

Answer any Four questions:

- 9. a) Explain all the information associated with a specific process in PCB. (4)
 - b) What are Monitors? Explain Dining Philosopher's problem with solution using monitor.

(6)

10. a) Define Process. Explain the states of process.

(5)

b) Define semaphores. Explain Reader-Writer problem with semaphore in detail.

(5)

[P.T.O.

- Consider the following page reference stream: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 11. a) 0, 1, 7, 0, 1. How many page faults would occur for LRU and FIFO replacement algorithms assuming Three Frames? Which one of the above is most efficient? **(7)**
 - What are Virtual machines? Explain the benefit of creating virtual Machines. **(3)** b)
- Explain various techniques of Disk Management in mass storage structure. (3) 12. a)
 - Define Paging. Explain the Address Translation in paging. (7) b)
- Consider the following snapshot of a system:

Processes	Allocation		Max			Available					
	A	В	C	Α	В	C		Α	В	Ç	45
P0	1	1	2	4	3	3		2	1	SP	ARAR!
P1	2	1	2	3	2	2				KE IN	UB John J.
P2	4	0	1	9	0	2				P. A. B.	5 Dais
P3	0	2	0	7	5	3					* SANGALO!
P4	1	1	2	1	1	2					

Calculate the content of the need matrix? a)

(4)

b) Is the system in a safe state? (3)

c) Determine the total amount of resources of each type?

- (3)
- Consider the processes P1, P2, P3, P4 given in the below table, arrives for execution 14. a) in the same Order, with arrival time 0 and given burst time. Find the Average waiting time and Turnaround Time using FCFS scheduling algorithm. **(5)**

Process	Burst Time
P1	21
P2	3
Р3	6
P4	2

Write a short notes on: Context Switch and Access Matrix. b)

(5)