

17MAT31

Third Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Engineering Mathematics – III**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Find the Fourier series expansion of f(x), if $f(x) = \sqrt{1-\cos x}$, $0 < x < 2\pi$ and hence evaluate $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$ (08 Marks)
 - Expand the function f(x) defined by, $f(x) = \begin{cases} \frac{1}{4} x; & \text{for } 0 < x < \frac{1}{2} \\ x \frac{3}{4}; & \text{for } \frac{1}{2} < x < 1 \end{cases}$ in a half range sine series.

(06 Marks)

A function f(x) of period 2π is specified by the following table :

x :	0	$\frac{\pi}{3}$	$2\frac{\pi}{3}$	π	$4\frac{\pi}{3}$	$5\frac{\pi}{3}$	2π
f(x):	7.9	7.2	3.6	0.5	0.9	6.8	7.9

Obtain the Fourier series for f(x) up to the first harmonic.

(06 Marks)

OR

Find the Fourier Series expansion of f(x). If $f(x) = \begin{cases} 0 & \text{in } -\pi \le x < 0 \\ \sin x & 0 < x \le \pi \end{cases}$. Hence deduce that

$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$$
 (08 Marks)

- b. Express f(x) = x as a half-range Fourier cosine series in 0 < x < 2. (06 Marks)
- Obtain first harmonic of the data:

X	0	1	2	3	4	5
У	4	8	15	7	6	2

(06 Marks)

a. Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$, hence deduce

$$\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4}.$$
 (08 Marks)

- b. Find the Fourier cosine transform of $f(x) = \frac{e^{-ax}}{x}$; $x \ne 0$, a > 0. (06 Marks)
- c. Solve the difference equation, using z-transform $y_{n+2} 4y_n = 0$, given that $y_0 = 0$, $y_1 = 2$.

OR

4 a. Find the Fourier transform of $f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$ and hence deduce that $\int_0^\infty \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}$.

(08 Marks)

b. Find the inverse z-transform of $\frac{3z^2 + z}{(5z-1)(5z+2)}$. (06 Marks)

c. Find the z-transform of, (i) $K^n \cos \theta$ (ii) $2n + 5\sin \frac{n\pi}{4} - 3a^5$ (06 Marks)

Module-3

5 a. If θ is the angle between the two regression lines, show that $\tan \theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$.

Explain the significance when r = 0 and $r = \pm 1$.

(08 Marks)

b. Fit a best parabola of the form $y = a + bx + cx^2$ to the following data:

X	2	4	6	8	10
У	3.07	12.85	31.47	57.38	91.29

(06 Marks)

c. Find an approximate real root of the equation $x \sin x + \cos x = 0$ near $x = \pi$, upto four decimal places using Newton's-Raphson method. (06 Marks)

OR

6 a. Find the co-efficient of correlation and two regression lines for the following data:

X	1	2	3	4	5	6	7	8	9
у	9	8	10	12	11	13	14	16	15

(08 Marks)

b. Fit a curve of the form $y = ae^{bx}$. Use the method of least squares to the following data:

X	5	15	20	30	35	40
у	10	14	25	40	50	62

(06 Marks)

c. Find the real root of the equation $\cos x = 3x - 1$, correct to three decimals using regula-falsi method, that lies between 6.5 and 1. (Here x is in radians) (06 Marks)

Module-4

7 a. From the data given in the following table, find the number of students who obtained (i) less than 45 marks (ii) between 40 and 45 marks. (08 Marks)

 Marks
 30 - 40
 40 - 50
 50 - 60
 60 - 70
 70 - 80

 No. of students
 31
 42
 51
 35
 31

b. Find the interpolating polynomial f(x) by using Newton's divided difference interpolation formula from the data:

X :	0	1	2	3	4	5
f(x):	3	2	7	24	59	118

(06 Marks)

c. Compute the value of $\int_{0.2}^{1.4} (\sin x - \log_e x + e^x) dx$ using Simpson's $\frac{3}{8}^{th}$ rule by taking seven ordinates.

In the given table below, the values of y are consecutive terms of the series of which 23.6 in 8 the 6th term. Find the first and tenth terms of the series using Newton's formulae. (08 Marks)

X	3	4	5	6	7	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

Find the interpolating polynomial f(x) by using Lagrange's formula and hence find f(3) for the following data:

f(0) = 2, f(1) = 3, f(2) = 12, f(5) = 147.

(06 Marks)

Evaluate $\int_{0}^{\infty} \frac{x}{1+x^2} dx$ by Weddle's rule taking seven ordinates.

(06 Marks)

Verify Green's theorem for $\int (xy + y^2)dx + x^2dy$, where C is bounded by y = x and $y = x^2$.

(08 Marks)

- Using Stoke's theorem, evaluate $\iint \left(\operatorname{curl} \vec{f} \right) \cdot \hat{n} dS$; $\vec{f} = (y z + 2)\hat{i} + (yz + 4)\hat{j} zx\hat{k}$, where S is the surface of the cube formed by the plane x = 0, y = 0, x = 2, y = 2 and z = 2 with its bottom removed.
- Solve the Euler's equation for the functional $\int_{a}^{b} (1 + x^2y')y'dx$. (06 Marks)

- State and prove Euler's equation in the form, $\frac{\partial f}{\partial v} \frac{d}{dx} \left(\frac{\partial f}{\partial v'} \right) = 0$. 10
 - Use divergence theorem to evaluate ∬F. ndS over the entire surface of the region above

xy-plane bounded by x = 0, x = 0, y = 0, y = 1, z = 0, z = 1, where $\overrightarrow{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$.

(06 Marks)

Prove that the shortest distance between two points in a plane is a straight line. (06 Marks)