18MAT31

Third Semester B.E. Degree Examination, Dec.2024/Jan.2025 Transform Calculus, Fourier Series and Numerical Techniques

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find $L\left\{\frac{\cos at - \cos bt}{t}\right\}$.

(06 Marks)

b. A periodic function of period $\frac{2\pi}{\omega}$ is defined by, $f(t) = \begin{cases} E \sin \omega t, & 0 < t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$ (07 Marks)

c. Solve: y'' - y' - 2y = 0; given y(0) = 0 and y'(0) = 6 by Laplace transformation method. (07 Marks)

OR

2 a. Find $L^{-1}\left\{\frac{4s+5}{(s-1)^2(s+2)}\right\}$.

(06 Marks)

b. Apply convolution theorem to evaluate $L^{-1} \left\{ \frac{1}{(s^2 + 1)(s^2 + 9)} \right\}$.

(07 Marks)

c. Using unit step function, find the Laplaces transform of, $f(t) = \begin{cases} \sin t, & 0 \le t < \pi \\ \sin 2t, & \pi \le t \le 2\pi. \end{cases}$

(07 Marks)

Module-2

3 a. Obtain the Fourier Series for the function, $f(x) = x^2$, $0 < x < 2\pi$.

(06 Marks)

b. Find the Fourier series of f(x),

Where $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$.

(07 Marks)

c. Express f(x) = x as a half-range cosine series in 0 < x < 2.

(07 Marks)

OR

4 a. Obtain Fourier series for the function, $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$ (06 Marks)

b. Find the Fourier half-range cosine series of the function f(x) = (x+1), in (0, 1). (06 Marks)

c. Compute the first harmonic of the Fourier series of f(x) given in the following table :

X	0	$\frac{\pi}{2}$	$\frac{2\pi}{2}$	π	$\frac{4\pi}{2}$	$\frac{5\pi}{2}$	2π
У	1.0	1.4	1.9	1.7	1.5	1.2	1.0

(08 Marks)

Module-3

- Find the z-transform of, $3n-4\sin\left(\frac{n\pi}{4}\right)+5a$. (06 Marks)
 - Compute the inverse z-transform of, $\frac{2z^2+3z}{(z+2)(z-4)}$ (07 Marks)
 - Find the Fourier transform of, $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$, Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$. (07 Marks)

- Find the Fourier sine transform of e^{-ax} . (06 Marks)
 - If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, evaluate u_2 and u_3 . (07 Marks)
 - Using the z-transform, solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$, $u_0 = 0$, $u_1 = 1$. (07 Marks)

Find by Taylor's series method the value of y at x = 0.1 and x = 0.2 to four places of decimals from,

$$\frac{dy}{dx} = x^2y - 1, \ y(0) = 1.$$
 (06 Marks)

- b. Apply Runge-Kutta fourth order method to find an approximate value of y when x = 0.2, given $\frac{dy}{dy} = x + y$, y(0) = 1. (07 Marks)
- c. If $\frac{dy}{dy} = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.04 and y(0.3) = 2.09, find y(0.4) by employing the Milne's predictor-corrector formula, use corrector formula twice. (07 Marks)

- Using modified Euler's method, solve the IVP $\frac{dy}{dx} = x + \sqrt{y}$, y(0) = 1 at x = 0.2, perform three modifications. (06 Marks)
 - Using the fourth order Runge-Kutta method, solve the IVP $\frac{dy}{dx} = \frac{1}{x+y}$ at the point x = 0.5. Given that y(0.4) = 1. (07 Marks)
 - c. Given $\frac{dy}{dx} = x^2(1+y)$, y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979. Determine y(1.4) by Adams-Bashforth method. (07 Marks)

- Runge-Kutta method of fourth order solve the differential equation, $\frac{d^2y}{dx^2} = x \left(\frac{dy}{dx}\right)^2 - y^2, \text{ with } y(0) = 1, \ y'(0) = 0 \text{ at } x = 0.2.$ (06 Marks)
 - b. Derive Euler's equation in the standard form, $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (07 Marks)

c. On which curve the functional,

$$\int_{0}^{\frac{\pi}{2}} (y'^{2} - y^{2} + 2xy) dy, \ y(0) = 0, \ y(\frac{\pi}{2}) = 0 \text{ be extremized.}$$
 (07 Marks)

OR

10 a. Apply Milne's method to compute y(0.8), given that $\frac{d^2y}{dx^2} = 1 - 2y\frac{dy}{dx}$ and

X	0	0.2	0.4	0.6
У	0	0.02	0.0795	0.1762
y'	0	0.1996	0.3937	0.5689

(06 Marks)

b. Prove that the geodesics on a plane are straight line.

(07 Marks)

c. Find the extremal of the functional, $I = \int_{0}^{\frac{\pi}{2}} (y'^2 - y^2 + 4y \cos x) dx$, given that y(0) = 0,

 $y\left(\frac{\pi}{2}\right) = 0. ag{07 Marks}$

* * * * *