

18MAT21

(06 Marks)

Second Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Advanced Calculus and Numerical Methods

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

- a. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) along 2i j 2k. (06 Marks)
 - b. If $\vec{F} = \nabla(xy^3z^2)$ find $div \vec{F}$ and $curl \vec{F}$ at (1, -1, 1). (07 Marks)
 - c. Find the of the constant ʻa' such that $\vec{F} = (axy - z^3)i + (a - 2)x^2j + (1 - a)xz^2k$ is irrotational and hence find a scalar function ϕ such that $\vec{F} = \nabla \phi$. (07 Marks)

- a. If $\vec{F} = (3x^2 + 6y)i 14yzj + 20xz^2k$, evaluate $\int \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the curve given by x = t, $y = t^2$, $z = t^3$.
 - b. Find the area between the parabola $y^2 = 4x$ and $x^2 = 4y$ using Green's theorem. (07 Marks)
 - c. Evaluate $\int xy \, dx + xy^2 \, dy$ by using Stoke's theorem where c is the square in the xy-plane with vertices (1, 0), (-1, 0), (0, 1) and (0, -1). (07 Marks)

- 3 a. Solve $(D^3 + 6D^2 + 11D + 6)y = 0$
 - b. Solve $\frac{d^2y}{dx^2} + y = \sec x \tan x$ by the method of variation of parameters. (07 Marks)
 - c. Solve $x^2 \frac{d^2y}{dx^2} 3x \frac{dy}{dx} + 4y = (1+x)^2$ (06 Marks)

OR

- 4 a. Solve $(D^2 + 1)y = e^x + x^4 + \sin x$ (06 Marks)
 - b. Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2\{\log(1+x)\}$ (07 Marks)
 - c. The current i and the charge q in a series containing an inductance L, capacitance C, emf \in , satisfy the differential equation $L \frac{d^2q}{dt^2} + \frac{q}{C} = \in$. Find q and i terms of 't' given that L, C, \in are constants and the value of i and q are zero initially.

Module-3

- a. Form the partial differential equation by elimination of arbitrary function from $\phi(x + y + z, xy + z^2) = 0$ (06 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$, when x = 0 and z = 0, when y is odd multiple of $\pi/2$. (07 Marks)
 - c. Derive one dimensional heat equation in the form $\frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$ (07 Marks)

OR

- 6 a. Solve $\frac{\partial^2 z}{\partial y^2} = z$ given that z = 0 and $\frac{\partial z}{\partial y} = \sin x$ when y = 0. (06 Marks)
 - b. Solve $(mz ny)\frac{\partial z}{\partial x} + (nx lz)\frac{\partial z}{\partial y} + (mx ly) = 0$ (07 Marks)
 - Find all possible solutions of one dimensional wave equation $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{r}^2} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$ by variable separable method. (07 Marks)

a. Test for convergence for series 7

$$1 + \frac{2}{3}x + \frac{2.3}{3.5}x^2 + \frac{2.3.4}{3.5.7}x^3 + \dots (x > 0)$$
 (06 Marks)

b. Solve Bessel's differential equation
$$x^2y'' + xy' + (x^2 - n^2)y = 0 \text{ leading to } J_n(x). \tag{67 Marks}$$

c. Express the polynomial $2x^3 - x^2 - 3x + 2$ in terms of Lengendre polynomials. (07 Marks)

- a. Discuss the nature of the series $\sum \frac{(n+1)^n x^n}{n^{n+1}}$ (06 Marks)
 - If α and β are two distinct roots of $J_n(x) = 0$, prove that

$$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0 , \text{ if } \alpha \neq \beta.$$
 (07 Marks)

c. If $x^3 + 2x^2 - x + 1 = aP_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$, find the values of a, b and c. (07 Marks)

- Using Newton-Raphson method find the real root of the equation $3x = \cos x + 1$. Carry out 9 three iterations. (06 Marks)
 - Using Newton's forward interpolation formula find f(3) given:

X	0	2	4	6	8	10
y = f(x)	0	4	56	204	496	980

(07 Marks)

c. Evaluate $\int_0^1 \frac{dx}{1+x}$ by applying Simpson's $3/8^{th}$ rule considering 6 equal subintervals. Hence deduce the value of $\log_e 2$ (07 Marks)

OR

10 a. Using Newton's divided difference formula find f(8) from the following data:

x:	4	5	7	10	11	13
у:	48	100	294	900	1210	2028

(06 Marks)

b. Using Regula-Falsi method find the real root of $x \log_{10} x - 1.2 = 0$. Carry out three iterations.

(07 Marks)

c. Evaluate $\int_{4}^{5.2} \log_e x \, dx$ taking 6 equal strips by applying Weddle's rule. (07 Marks)

* * * * *