USN

BMATS201

Second Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mathematics – II for CSE Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	07	L2	CO1
	b.	Prove that $\beta(m,n) = \frac{\boxed{m} \cdot \boxed{n}}{\boxed{(m+n)}}$	07	L2	CO1
	c.	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dy dx$ by changing to polar coordinates.	06	L3	CO1
		OR			
Q.2	a.	Evaluate $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} xy dy dx$ by change the order of integration.	07	L2	CO1
	b.	Show that $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta = \pi$	07	L2	CO1
	c.	Write a program to find the volume of the tetrahedron bounded by the planes $x = 0$, $y = 0$, $z = 0$, $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	06	L3	CO5
		Module – 2			W
Q.3	a.	Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at the point $(2, -1, 2)$ along $2\hat{i} - 3\hat{j} + 6\hat{k}$.	07	L2	CO2
	b.	Find the value of the constants a, b, c such that $\vec{F} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$ is irrotational.	07	L2	CO2
	c.	Show that the cylindrical co-ordinate system is orthogonal.	06	L3	CO2
		OR			
Q.4	a.	Find the value of the constants 'a' such that the vector field, $\vec{F} = (axy - z^3)\hat{i} + (a-2)x^2\hat{j} + (1-a)xz^2\hat{k}$ is irrotational.	07	L2	CO2
	b.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	07	L2	CO2
	c.	Write a program to verify whether the following vectors $(2, 1, 5, 4)$ and $(3, 4, 7, 8)$ are orthogonal.	06	L3	CO5
	•				

Q.5 a. Express the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$ in the vector spaces of 2×2 matrices as a linear combination of $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ b. Determine whether the vectors $V_1 = (1, 2, 3)$, $V_2 = (3, 1, 7)$ and $D = (3, 1, 7)$:6		Module – 3			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q.5	a.		07	L2	CO3
defined by T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)		b.		07	L2	CO3
 Q.6		c.		06	L3	CO3
			OR	1		
$f(t) = t + 2 \ , \ g(t) = 3t - 2 \ h(t) = t^3 - 2t - 3 \ and < f, \ g > = \int_0^1 f(t)g(t) \ dt \ .$ (i) Find $< f, \ g > $ and $< f, \ h > $ (ii) Find $\parallel f \parallel$ and $\parallel g \parallel$ c. If V is a vector space of polynomials over R. Find a basis and dimension of the subspaces W and V, spanned by the polynomials. $x_1 = t^3 - 2t^2 + 4t + 1 \ , x_2 = 2t^3 - 3t^2 + 9t - 1 \ x_3 = t^3 + 6t - 5 \ , x_4 = 2t^2 - 5t^2 + 7t + 5$ Module -4 Q.7 a. Find the real root of the equation $x \log_{10} x - 1.2 = 0$ by Regular Falsi of L2 Comethod. Correct to four decimal places. b. From the following table find the number of students who have obtained less than 45 marks. $\frac{Marks}{No. \ of \ students} = \frac{30 - 40}{31} \frac{40 - 50}{42} \frac{50 - 60}{35} \frac{60 - 70}{35} \frac{70 - 80}{35}$ c. Evaluate $\frac{1}{0} \frac{dx}{1 + x^2}$ by using Simpson's $(1/3)^{rd}$ rule taking four equal strips. OR Q.8 a. Fit the polynomial for the following data using Newton's divided difference formula and hence find $f(3)$. $\frac{x}{2} = \frac{4}{4} \frac{5}{35} \frac{6}{350} \frac{8}{868} \frac{10}{1746}$ b. Using Lagrange's interpolation formula find $f(4)$. $\frac{1}{2} \frac{1}{2} \frac{1}{$	Q.6	a.	$x_1 = (1, 2, -1, 3, 4), x_2 = (2, 4, -2, 6, 8), x_3 = (1, 3, 2, 2, 6), x_4 = (1, 4, 5, 1, 8) \text{ and } x_5 = (2, 7, 3, 3, 9).$	07	L2	CO3
the subspaces W and V, spanned by the polynomials. $x_1 = t^3 - 2t^2 + 4t + 1$, $x_2 = 2t^3 - 3t^2 + 9t - 1$ $x_3 = t^3 + 6t - 5$, $x_4 = 2t^3 - 5t^2 + 7t + 5$ Module - 4 Q.7 a. Find the real root of the equation $x \log_{10} x - 1.2 = 0$ by Regular Falsi 07 L2 Comethod. Correct to four decimal places. b. From the following table find the number of students who have obtained less than 45 marks. Marks 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 No. of students 31 42 51 35 31 31 32 31 35 31 31 32 31 35 31 31 32 33 34 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 35		b.	$f(t) = t + 2, g(t) = 3t - 2 h(t) = t^3 - 2t - 3 \text{ and } < f, g > = \int_0^1 f(t)g(t) dt.$ (i) Find < f, g > and < f, h >	07	L2	CO3
Q.7 a. Find the real root of the equation $x \log_{10} x - 1.2 = 0$ by Regular Falsi of L2 Comethod. Correct to four decimal places. b. From the following table find the number of students who have obtained less than 45 marks. Marks 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 No. of students 31 42 51 35 31 c. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $(1/3)^{rd}$ rule taking four equal strips. OR Q.8 a. Fit the polynomial for the following data using Newton's divided difference formula and hence find $f(3)$. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		c.	the subspaces W and V, spanned by the polynomials. $x_1 = t^3 - 2t^2 + 4t + 1$, $x_2 = 2t^3 - 3t^2 + 9t - 1$	06	L2	CO3
method. Correct to four decimal places. b. From the following table find the number of students who have obtained less than 45 marks. Marks No. of students 1			Module – 4			
less than 45 marks.	Q.7	a.		07	L2	CO4
c. Evaluate $\int_{0}^{\frac{4}{1+x^2}}$ by using Simpson's $(1/3)^{rd}$ rule taking four equal strips. OR Q.8 a. Fit the polynomial for the following data using Newton's divided difference formula and hence find f(3). $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		b.	less than 45 marks. Marks 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80	07	L2	CO4
Q.8 a. Fit the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula and hence find f(3). Value of the polynomial for the following data using Newton's divided difference formula find f(4). Value of the polynomial for the following data using Newton's divided difference formula find f(4). Value of the polynomial for the following data using Newton's divided difference formula find f(4). Value of the polynomial find f(4). <td></td> <td>c.</td> <td>Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's $(1/3)^{rd}$ rule taking four equal strips.</td> <td>06</td> <td>L3</td> <td>CO4</td>		c.	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's $(1/3)^{rd}$ rule taking four equal strips.	06	L3	CO4
formula and hence find f(3).						
y 10 96 196 350 868 1746 b. Using Lagrange's interpolation formula find f(4). x 0 2 3 6	Q.8	a.	formula and hence find f(3).	07	L2	CO4
x 0 2 3 6			10 00 100 250 260 1740		=	
x 0 2 3 6		b.	Using Lagrange's interpolation formula find f(4).	07	L2	CO4
y -4 2 14 158						
			y -4 2 14 158			

*		4	06	L3	CO4
Q.8	c.	Use Simpson's $(3/8)^{th}$ rule to evaluate $\int_{1}^{\infty} e^{1/x} dx$ by taking four ordinates.	5589 01794.3		
		Module – 5			
Q.9	a.	Employ Taylor's series method to solve the initial value problem	07	L2	CO4
		$\frac{dy}{dx} = x - y^2$; $y(0) = 1$ at the point $x = 0.1$ by considering upto 4 th degree			
		terms.			
	b.	Apply Milne's method to compute y(1.4) for the differential equation	07	L2	CO4
		$\frac{dy}{dx} = x^2 + \frac{y}{2}$, given that $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.3) = 2.4649$ and			
		y(1.3) = 2.7514 correct to four decimal places.			
	c.	Use fourth order Runge Kutta method to find the value of y at $x = 0.1$,	06	L2	CO4
		given that			
		$\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ and $h = 0.1$.			
		dx			
		OR			
Q.10	a.	Use Modified Euler's method to compute y(0.1), given that	07	L2	CO4
		$dy = v^2 + v + v(0) = 1 $ by taking $h = 0.05$			
		$\frac{dy}{dx} = x^2 + y$; y(0) = 1 by taking h = 0.05.			
	b.	If $\frac{dy}{dy} = 2e^x - y$; $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$ and $y(0.3) = 2.090$.	07	L2	CO4
2		dx			
		Find the value of y at $x = 0.4$ correct to four decimal places by applying			
		Milne's predictor and corrector method.			
		dy	06	L3	CO5
	c.	Write a program to solve: $\frac{dy}{dx} - 2y = 3e^x$ with $y(0) = 0$ using Taylor's			
		series method at $x_1 = 0.1$, $x_2 = 0.2$ and $x_3 = 0.3$.			

* * * * *