CBCS SCHEME

USN

BMATC201

Second Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mathematics – II for Civil Engineering Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx.$	7	L2	CO1
	b.	Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$ by changing the order of integration.	7	L3	CO1
	c.	Derive the relation $\beta(m,n) = \frac{\gamma(m).\gamma(n)}{\gamma(m+n)}$.	6	L2	CO1
		OR			
Q.2	a.	Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} dy dx$ by changing into polar coordinates.	7	L3	CO1
	b.	Using double integration find the area of a plane in the form of a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	7	L2	CO1
	c.	Using modern mathematical program to evaluate the integral, $\int_{0}^{3} \int_{0}^{3-x} \int_{0}^{3-x-y} xyz dz dy dx .$	6	L3	CO5
		Module – 2	-		
Q.3	a.	If $\overrightarrow{F} = \nabla(xy^3z^2)$, find div \overrightarrow{F} and curl \overrightarrow{F} at the point $(1, -1, 1)$.	7	L2	CO2
	b.	Define an irrotational vector. Find the constants a, b, c such that $\vec{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ is irrotational.	7	L2	CO2
	c.	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of the vector $2\hat{\mathbf{i}} - \mathbf{j} - 2\hat{\mathbf{k}}$.	6	L2	CO2

		OR			
Q.4	a.	Using Green's theorem, evaluate $\int (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C	7	L3	CO2
		is the boundary of the region enclosed by $y = \sqrt{x}$ and $y = x^2$.			
	b.	If $\overrightarrow{F} = xyi + yzj + zxk$, evaluate $\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r}$ where C is the curve represented by,	7	L2	CO2
		$x = t$, $y = t^2$, $z = t^3 - 1 \le t \le 1$			
	c.	Write the modern mathematical tool program to find the divergence of the vector field, $\vec{F} = x^2yz\hat{i} + y^2zx\hat{j} + z^2xy\hat{k}$.	6	L3	CO5
		Module – 3			
Q.5	a.	Form the partial differential equation by eliminating the arbitrary function from the relation, $\ell x + my + nz = f(x^2 + y^2 + z^2)$	7	L2	CO3
	b.	Solve $\frac{\partial^2 z}{\partial y^2} = Z$, given that $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$.	7	L3	CO3
	c.	Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$ using Lagrange's multipliers.	6	L2	CO3
		OR			
Q.6	a.	Form the partial differential equation by eliminating the arbitrary constants from $(x-a)^2 + (y-b)^2 + z^2 = C^2$.	7	L2	CO3
	b.	Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$, when $x = 0$ and $z = 0$ if y is an odd multiple of $\frac{\pi}{2}$.	7	L3	CO3
	c.	Derive one dimensional wave equation.	6	L2	CO3
	1	Module – 4		1	1
Q.7	a.	By Newton's-Raphson method find the root of $x \sin x + \cos x = 0$, which is near to $x = \pi$.	7	L2	CO4
	b.	The population of a town is given by the following table: Year 1951 1961 1971 1981 1991 Population 19.96 39.65 58.81 72.21 94.61 Using Forward and Backward Newton's interpolation formula, calculate the increase in population between the years 1955 to 1985.	7	L2	CO4
	c.	Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} d\theta$ by taking 7 ordinates using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule.	6	L3	CO4

		OP			
0.0		OR	7	1.2	COA
Q.8	a.	Compute the real root of the equation $x \log_{10} x - 1.2 = 0$ by the Regula Falsi method taking Four decimal places.	7	L2	CO4
	b.	Compute the value of y when $x = 4$, using Lagrange's interpolation formula	7	L2	CO4
		given,			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		f(x) -4 2 14 158			
		0.3 1 (1) rd			
	c.	Evaluate $\int_{0.5}^{0.5} (1-8x^3)^{\frac{1}{2}} dx$ by using Simpson's $(\frac{1}{3})^{1/2}$ rule, by taking 3 equal	6	L3	CO4
		0			
		parts.			
		Module – 5			
0.0					
Q.9	a.	Solve by using modified Euler's method. $\frac{dy}{dx} = x - y^2$, $y(0) = 1$ taking	7	L2	CO4
		h = 0.1, find y(0.2).			
	b.	Applying Milne's predictor and corrector method, find y(0.8) from	7	L2	CO4
		$\frac{dy}{dx} = x - y^2$ and given $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$,			
		y(0.6) = 0.1762.			
	0	Using Runge-Kutta method of order 4, find y at $x = 0.1$, given that	6	L3	CO4
	c.		U	LS	004
		$\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ and $h = 0.1$.			
		ux			
		OR			
0.10	a	Use Taylor's series method to find $y(0.1)$ from $\frac{dy}{dx} = x - y^2$ and $y = 1$ at	7	L2	CO4
Q.10	a.	dx			
		$x = 0$ upto 4^{th} degree.			
	b.	Using the Runge-Kutta method of order 4, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with	7	L2	CO4
-		dx $y^2 + x^2$			
		y(0) = 1 at $h = 0.2$, find $y(0.2)$.			
		7 0 7			
	c.	Using mathematical tools, write a code to find the solution of $\frac{dy}{dx} = 1 + \frac{y}{x}$ at	6	L3	CO5
		ux x			
		y(2) taking $h = 0.2$ given that $y(1) = 2$ by Runge-Kutta method of order 4.			

* * * *