

ACHARYA'S NRV SCHOOL OF ARCHITECTURE

SOLADEVANAHALLI, BENGALURU -560107

AASARA- Solution for waste upcycling ARCHITECTURE DESIGN PROJECT (THESIS) – 2024-25

Submitted in partial fulfillment of the Requirements for the "Bachelor of Architecture" Degree Course

Submitted by : S. Aishwarrya Shre

USN : 1AA20AT046 Guide : Ar. Gracy David

A project report submitted to

VISVESHWARAYA TECHNOLOGICAL UNIVERSITY

"Jnana Sangama", Machhe, Belgaum – 590018

ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ - ೫೯೦೦೧೮

CERTIFICATE

This is to certify that this thesis report titled "AASARA- Solution for waste

upcycling" by S. Aishwarrya Shre of IX SEMESTER B. Arch, USN No.

1AA20AT046, has been submitted in partial fulfillment of the requirements for

the award of under graduate degree Bachelor of Architecture (B.Arch.) by

Visveshwaraya Technological University VTU, Belgaum during the year 2024-

25.

Guide: Ar. Gracy David

Principal

Examined by:

1)Internal Examiner

2)External examiner 1 :

3)External examiner 2 :

DECLARATION

This thesis title "AASARA- Solution for waste upcycling", submitted in partial

fulfillment of the requirement for the award of the under graduate of Bachelor of

architecture is my original work to the best of my knowledge.

The sources for the various information and the data used have been duly

acknowledged.

The work has not been submitted or provided to any other institution/ organization

for any diploma/degree or any other purpose.

I take full responsibility for the content in this report and in the event of any

conflict or dispute if any, hereby indemnify Acharya's NRV School of

Architecture and Visveshwaraya Technological University, Belagavi, and its

official representatives against any damages that any raise thereof.

(Signature)

S. AISHWARRYA SHRE

1AA20AT046

ACKNOWLEDGEMENT

I would want to express my heartfelt gratefulness to everyone who helped me in the completion and progression of this project because without their backing, it would not have been doable to complete the project.

First and foremost, I extend my sincere thanks to the principal Prof. Ar. Sanjyot Shah, for giving access to resources and facilities that were pivotal for conducting my study.

I'm deeply delighted to my thesis counsel, Ar. Gracy David, for her inestimable guidance, insightful feedback, and unwavering support throughout this research and design endeavors.

I'm thankful to my intimates and family for their understanding, encouragement, and patience during this demanding yet satisfying journey.

Incipiently, I acknowledge the contribution of all the participants who freehandedly shared their time and wisdom for this study.

Their support has been pivotal in shaping this thesis and enriching my education proficiency in the field of architecture.

TABLE OF CONTENTS:

ABSTRACT	. 11
1. INTRODUCTION	. 12
1.1 Problem:	. 13
1.2 Aim:	. 13
1.3 Objectives:	. 13
1.4 Scope:	. 13
1.5 Limitations:	. 13
1.6 Applicable Theories:	. 13
1.7 Justification:	
2. ARCHITECTURE AND WASTE MANAGEMENT	. 14
2.1 Waste Management:	. 14
2.2 Waste management statistics in the world:	. 15
2.3 Why is waste not being addressed:	. 16
2.4 Concerns related to waste management:	. 17
2.5 How is waste disposed:	. 18
2.6 Landfills and its types:	. 19
2.7 Architecture and waste management:	.21
2.8 Agendas taken by the world bank:	. 23
2.9 Waste Management in India:	. 24
2.10 Solid waste management in Mumbai:	. 25
2.11 Why Deonar Landfill for waste management:	. 27
2.12 Methods of waste management:	. 28
3. WASTE UPCYCLING	.29
3.1 What is waste upcycling:	. 29
3.2 Product life cycle and waste upcycling:	.30
3.2 Importance of waste upcycling:	
3.4 Requirement of waste upcycling unit in India:	. 33
3.5 Examples of materials upcycled for construction	. 34
3.6 Case study of using upcycled materials in construction	. 36
3.3.1 Scrap skyscraper (Research based projects):	. 36
3.3.2 Empower Shack (Built project):	. 38
3.7 Difference between upcycling and recycling:	. 39
4. SLUM SETTLEMENTS	.40
4.1 What are Slums:	.40
4.2 Why are slums formed:	.41
4.3 Slums of India:	
4.3.1 Slums of Mumbai:	. 43
4.4 Challenges faced by the slum dwellers:	.45
4.5 Failure of existing slum re-development:	.46
4.6 Government initiatives and policies:	. 47
4.7 Solution and interventions towards Slum development:	

5. SLUMS AND INFORMAL WASTE MANAGEMENT	. 49
5.1 Relation between slum and waste management:	. 49
5.2 Waste management is a community driven approach:	
6. LITERATURE STUDY	.51
6.1 Copen Hill waste to energy plant	.51
6.2 Sunset material recovery facility	. 54
6.3 Aranya low-cost housing	. 56
7. LIVE CASE STUDY	. 59
7.1 CIDCO housing	. 59
7.2 Belapur incremental housing	. 62
7.3 KK plastics recycling center	. 65
8. PLASTIC AS A MATERIAL	. 67
8.1 Statistics of states that produce plastic	. 67
8.2 Current trends of waste management:	
8.3 How much plastics is collected in Deonar?	. 69
8.4 Classification of plastics:	
8.5 Segregation of waste and plastics:	
8.6 Plastics used as a construction material:	
8.7 Advantages of plastics as a construction material:	. 74
8.8 Disadvantages of plastics as a construction material:	
8.9 Sustainability and the Future of Plastics in Construction:	
9. SITE SELECTION AND JUSTIFICATION	
9.1 Site Prescient:	.75
9.2 Comparing the urban fabric of the two sites:	.76
10. SITE DOCUMENTATION	.77
10.1 About the Baigan wadi site:	.77
10.2 Evolution of the site:	
10.3 Site context and topography:	
10.4 Site documentation of urban layers:	.81
10.5 Site Analysis:	. 84
10.6 Area Statement:	
11. SITE ZONING	. 86
12. CONCEPT	.87
12.1 Concept for form- Tessellation:	.87
12.1.1 What is Tessellation:	
12.1.2 Basic understanding on tessellation:	.87
12.1.3 Types of tessellation:	.88
12.1.4 Versatility of tessellation:	
12.1.5 Application of tessellation in architecture:	
12.2 Concept for functionality- Passive design:	
12.2.1 What is Passive Design	
12.2.1 Passive Design strategies to be followed for Mumbai	
12.2.2 Benefits of Passive Design in Mumbai:	

13. SPECIAL STUDY 1: Dharavi Redevelopment Project	93
13.1 Dharavi Redevelopment during the initial years:	93
13.2 Failure of Dharavi Redevelopment:	95
14. SPECIAL STUDY 2: Material Recovery Facility	98
14.1 The 3R approach of waste management:	98
14.2 About material recovery facility:	98
14.3 Need for material recovery facility:	99
14.4 Types of material recovery facility:	99
14.5 Advantages of material recovery facility:	101
14.6 Process of material recovery facility:	101
14.6 Equipment's used in material recovery facility:	103
15. FEASIBILITY STUDY	105
15.1 Need for the facility:	105
15.2 Existing Facilities:	106
15.3 Proposed Facilities:	106
15.4 Building site:	107
15.5 Bye Laws:	108
16. DESIGN STRATERGY AT POLICY LEVEL	110
17.CONCLUSION	
18. REFRENCES	
19. PLAGIARISM CERTIFICATE	113
20. PLAGIARISM REPORT	114

TABLE OF FIGURES

Figure 1:Housing made using construction waste	12
Figure 2: Improper segregation and open dumping of waste in public spaces	14
Figure 3: Statistics of waste management in the world	15
Figure 4: Some of the reasons for improper waste management	16
Figure 5: Concerns affect humans, environment and causes pollution	18
Figure 6: Waste gets disposed in landfills, incinerated or its open dumped	18
Figure 7: Statistics of Various ways of improper waste disposal	19
Figure 8: Open or non-engineered landfills	20
Figure 9: Engineered Landfills	20
Figure 10: Material Recovery units	21
Figure 11: Sustainable materials used in construction	22
Figure 12: Circular economy	23
Figure 13: Statistics of waste Management of India	25
Figure 14: Deonar Landfill and slums around it	27
Figure 15: Rag picking at Deonar	27
Figure 16: Recycling and sorting of materials	28
Figure 17: Upcycling process lies between reuse and recycle	29
Figure 18: Example of wool upcycled into multiple use	30
Figure 19: Cradle to cradle concept of upcycling	31
Figure 20: Importance of waste upcycling	
Figure 21: Tetra Pak used to make roofing sheets	34
Figure 22: Briq made of construction debris	
Figure 23: Bricks made using textile waste	35
Figure 24: Visualization od Scrap skyscraper	36
Figure 25: Modular housing units	
Figure 26: Schematic section	37
Figure 27: Land readjustment method	38
Figure 28: Housing unit typology	38
Figure 29: Statistic data migrated population in the world and in India	
Figure 30: Urban aggloromation in the world	42
Figure 31: Data of slums of India as per census 2011	43
Figure 32: Mumbai's population growth led to form slums	43
Figure 33: existing living situations of slums	45
Figure 34: Failure of slum redevelopment	
Figure 35: Various government policy on affordable housing	47
Figure 36: Relation between slum and IWM	
Figure 37: Copen hill view	51
Figure 38: Copen hill concept and ideation	52
Figure 39: Internal view of waste- energy plant	52
Figure 40: Copen hill outer facade	53
Figure 41: Sunset material facility	54
Figure 42: Master plan	55
Figure 43: Recycling education center	55

Figure 44: Aranya housing	. 56
Figure 45: Spatial distribution of Aranya housing	. 57
Figure 46: Ideation and arrangement of houses	. 57
Figure 47: Planning and section	. 58
Figure 48: CIDCO Housing	. 59
Figure 49: Ideation and concept	
Figure 50: Master planning, CIDCO Housing	.61
Figure 51: Cluster planning	
Figure 52: Belapur Incremental Housing	
Figure 53: Planning and clustering	
Figure 54: Existing condition of the housing	. 64
Figure 55: KK Plastics inside	. 65
Figure 56: Spatial Planning	
Figure 57: Data of plastic producing states in Indie	
Figure 58: Plastic waste management	. 69
Figure 59: Statistic Data of plastic	. 70
Figure 60: Types of plastics	
Figure 61: Waste segregation process	. 72
Figure 62: plastic brick process	
Figure 63: Statistics of plastic used in various field.	.73
Figure 64: Site prescient of Deonar	.75
Figure 65: Shivaginarag site-1	
Figure 66: images of Baigan wadi site-2	. 76
Figure 67: Urban fabric documentation	.76
Figure 68: Existing housing and housing condition of Deonar, Baiganwadi	. 77
Figure 69: Urban fabric evolution	. 78
Figure 70: Site context	. 79
Figure 71: Site section	. 79
Figure 72: Land use and land cover map of Mumbai	.80
Figure 73: Slum cover in Mumbai	. 80
Figure 74: Floor spots and water bodies	. 80
Figure 75: Demographics and figure ground	.81
Figure 76: Building use and settlement typology	.81
Figure 77: Water supply and drainage	.81
Figure 78: Safety mapping	. 82
Figure 79: Site Analysis	. 84
Figure 80: SWOT analysis	. 84
Figure 81: Macro zoning	. 86
Figure 82: Micro zoning	. 86
Figure 83: Tessellation	. 87
Figure 84: Principles of tessellation	. 87
Figure 85: Types of tessellation	. 88
Figure 86: Application of tessellation	. 89

Figure 87: Form determining the wind direction	90
Figure 88: Courtyard and built form relation	91
Figure 89: Insulation from humidity	
Figure 90: Evaporative cooling	91
Figure 91: Houses in Dharavi	93
Figure 92: Make shift shanties	94
Figure 93: Dharavi redevelopment visualization	97
Figure 94: most preferred process to least preferred process	98
Figure 95: Sorting material in MRF	99
Figure 96: Mixed MRF	100
Figure 97: Dry/ Clean MRF	100
Figure 98: Manual MRF	100
Figure 99: Automatic MRF	101
Figure 100: MRF process for dry waste	102
Figure 101: Weigh Bridge	103
Figure 102: Conveyor belt	103
Figure 103: Shredder	104
Figure 104: Granulator	104
Figure 105: Population increase over years	105
Figure 106: Site area	106
Figure 107: Mumbai Land use map	107
Figure 108: Floor map	108
Figure 109: FAR	108

ABSTRACT

The thesis project titled "Aasara – A solution for waste upcycling" is about providing shelter to the rag pickers and upliftment of their economic character by providing an upcycling unit.

Urban waste management is a global issue causing health and environmental hazards. The World Bank supports solid waste management projects to address this issue. Upcycling waste can reduce waste production, CO2 emissions, and promote a circular economy by creating usable construction material.

In India, Maharashtra, Tamil Nadu, Delhi, and Uttar Pradesh produce the most waste, leading to health hazards for those living near dumping grounds. Slums near these areas face social and economic challenges. The relocation of inner-city residents to areas like Deonar in Mumbai led to the growth of slums near dumping yards.

Burning waste in Deonar releases toxic chemicals causing health risks. Developing the slums around Deonar and creating an upcycling unit in an energy-efficient manner is needed. A study explores, that the health risks for slum dwellers can be reduced by regenerating public spaces and reusing materials.

Improving slum conditions through upcycling waste supports the circular economy, reduces waste, and provides employment opportunities. Developing sustainable solutions like green building materials and renewable energy systems will benefit the community near the landfill by creating products from recycled waste. A communal-driven approach will help slum dwellers earn income through waste upcycling.

Keywords: Circular economy, waste management, upcycling, Deonar, slum development.