(VIE UP	Park.				20.00	<u> </u>
USN						
G. Williams	10° 100° 100° 10° 10° 10° 10° 10° 10° 10	1 1	1 1	1 1		1 1

BCV402

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Fluid Mechanics and Hydraulics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	. Define the following terms along with symbols and units:		L1	CO1
		(i) Compressibility (ii) Mass density (iii) Specific weight			
		(iv) Relative density (v) Surface tension			
	b.	A differential manometer is connected at the two points A and B of two	10	L4	CO1
		pipes. The centre of pipe A is 3 m above centre of pipe B. Pipe 'A' contains			
		liquid of specific gravity 1.5, while pipe B contains a liquid of specific			
		gravity 0.9. The manometric liquid mercury is 5m below the centre of pipe			
		A. The pressure at A and B are 1 kgf/cm ² and 1.8 kgf/cm ² respectively.			
		Find the difference in mercury level in the differential manometer.			
0.0	T	OR	0.0	-	000
Q.2	a.	Derive an expression for total pressure and centre of pressure for a vertical	08	L2	CO ₂
	ļ.,	plane surface submerged in liquid.			600
	b.			L3	CO ₂
		cylinder from a volume of 0.0125 m ³ at 80 N/cm ² pressure to a volume of			
		0.0124 m³ at 150 N/cm² pressure?	0.6	T 4	001
	c.	An equilateral triangular plate of 5m side length is immersed in water with	06	L4	CO2
		its base and apex at 2 m and 6 m below the free surface of water			
		respectively. Calculate the total force and position of centre of pressure. $\mathbf{Module-2}$			
0.1	0	Distinguish between:	06	L1	CO2
Q.3	a.	(i) Steady and unsteady flow	00	LI	COZ
		(ii) Uniform and non-uniform flow			
		(iii) Laminar and turbulent flow			
	b.	Derive an expression for continuity equation for a three dimensional flow	08	L2	CO2
	0.	in Cartesian coordinate.	00		002
	c.	In a 2D incompressible flow, the fluid velocity components are given by	06	L3	CO2
		u = x - 4y and $v = -y - 4x$. Show that velocity potential exists.	,		
		OR			
Q.4	a.	State the assumptions and derive Bernoulli's equation of energy along a	10	L2	CO2
		streamline.			
	b.	The following are the data given for laying water supply pipeline. The	10	L4	CO2
		change in diameter is gradual from 20 cm at 'A' to 50 cm at B. Pressure at			
		A and B is 80 kN/m ² and 60 kN/m ² respectively. The end B is 3m higher			
		than A. If the flow in the pipe is 200 LPS, find: (i) Direction of flow			
		(ii) Head loss between A and B.			
		Module – 3			
Q.5	a.	Derive an expression for the discharge over a triangular notch.	08	L2	CO3
	b.	Distinguish between pipes in series and pipes in parallel.	04	L1	CO3
	c.	A 0.5 m diameter and 100 m long pipeline carrying 0.5 m ³ /sec of water is	08	L4	CO3
		fitted with valve at the downstream end. Calculate the rise of pressure			
		caused within the pipe due to valve closure. If: (i) Instantaneously			
		(ii) In one second. Assume sonic velocity as 1430 m/s.			
		1 of 2			

				BCV402		
		OR				
Q.6	a.	Derive Darcy-Weisback equation for head loss due to friction with	08	L2	CO3	
		assumptions.				
	b.	Water flows over a rectangular weir 1 m wide at a depth of 150 mm and	08	L3	CO3	
		afterwards passes through a triangular right angled weir. Take C _d for				
		rectangular weir as 0.62 and for triangular weir as 0.59. Find the depth over				
		triangular weir.				
	c.	Explain Water Hammer phenomenon.	04	L1	CO3	
19 19 19 19 19 19 19 19 19 19 19 19 19 1	_	Module – 4				
Q.7	a.	With neat sketches, differentiate between flow through pipes and flow	06	L2	CO ₄	
	-	through open channels with examples.				
	b.	What is meant by economical section of a channel? Derive the condition for	08	L1	CO ₄	
		the most economical rectangular section.	0 -		~~	
	c.	A discharge of 18 m ³ /sec flows through a rectangular channel 6m wide at a	06	L4	CO ₄	
		depth of 1.6 m. Find:				
		(i) Specific energy				
		(ii) Critical depth				
		(iii) State weather the flow is subcritical or supercritical				
0.0	T	OR	1.0	T 0	CO	
Q.8	a.	Explain the term hydraulic jump. Derive an expression for the depth of	10	L2	CO ₄	
	+,-	hydraulic jump.	10	T 4	CO	
	b.	A sluice gate discharges water into a horizontal rectangular channel with a	10	L4	CO ₄	
		velocity of 6 m/sec and depth of flow is 0.4 m. The width of the channel is				
		8m. Determine whether a hydraulic jump will occur or not, if occur find its				
		height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.				
		Module – 5				
Q.9	a.	Explain impulse momentum principle.	02	L2	COS	
Ų.9	+	Explain concept of velocity triangles. Also obtain an expression for work	08	L3	COS	
	b.	done per second by jet striking unsymmetrical moving vane tangentially at	UO	LS	CO.	
		one end of the tips.				
	c.	Design a pelton wheel turbine required to develop shaft power of 95.6475	10	L4	COS	
	۲.	KW working under a head of 60 m at a speed of 200 rpm. The overall	10	L	CO.	
		efficiency may be taken as 85%. Take $C_v = 0.98$ and velocity of the				
		buckets = 0.45 times the velocity of the jet.				
		OR	`x			
Q.10	a.	Draw a neat sketch of the hydro electric power plant. Mention the functions	08	L2	COS	
V.10		of each component.	00			
	b.	10 10 10 10 10 10 10 10 10 10 10 10 10 1		L4	COS	
		against a head of 25 m. The impeller diameter is 250 mm, its width at outlet	08	۷.		
		is 50 mm and manometric efficiency is 75%. Determine the vane angle at				
		the outer periphery of the impeller.				
	c.	Distinguish between turbine and pump.	04	L1	CO	