CBCS SCHEME

11 1 1	A STATE OF THE STA					
Marian A	There is a state					
FIGURE	18848 48 V		1 1 1			
ISN		3 4 4 3				
100			1 1 1			
A TEL BEST	177	x 2 " "		1 1		

BCV304

Third Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025 Water Supply and Wastewater Engineering

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
1	a.	Briefly explain the need and importance of protected water supply system.	6	L2	CO1
	b.	Explain the various types of water demand.			CO1
	c.	Describe the incremental method of estimating the population of a locality.	6	L2	CO1
		OR		l	
2	a.	What is meant by per capita demand? Mention the factors that affect per capita demand.	6	L1	CO1
	b.	Give the drinking water standards for the following parameters. Discuss their effect when theory exceed their limits: i) Turbidity ii) Hardness iii) Fluoride iv) Nitrate.	8	L2	CO2
	c.	The population data of a town are given below: Year 1990 2000 2010 2020 2030 Population 90,000 1,20,000 1,60,000 2,50,000 2,60,000 Estimate the expected population in the year 2050 by geometric increase method.	6	L3	CO1
			<u> </u>		
		Module – 2	,		
3	a.	Briefly explain the unit treatment processes of a water treatment plant with flow chart.	10	L2	CO3
	b.	The maximum daily demand at a water purification plant has been estimated as 12 million liter per day. Design a rectangular sedimentation tank (fitted with mechanical sludge removal arrangements) for the raw supplies, assuming a detention period of 6 hours and the velocity of flow as 20 cm per minute.	5	L3	CO3
	c.	Explain theory of filtration.	5	L3	CO3
		OR			
4	a.	What is meant by aeration? Explain the different types of aerators.	6	L1 L1	CO3
	b.	What is coagulation? List the different types of coagulants used in water treatment plant.			CO3
	c.	Explain the construction and working of a rapid gravity sand filter with a neat sketch.	10	L2	CO3
		Module – 3			
5	a.	List the minor methods of disinfection and explain any two methods in detail.	8	L1	CO3
	b.	Explain the need for sanitation. Define the following terms: i) Sullage ii) Sewage.	6	L2	CO4
	c.	Define sampling of water or wastewater. Explain the different methods of sampling.	6	L2	CO4
		1 of 2			4

BCV304 OR What is softening of water? List the methods used to remove hardness of CO₃ 6 6 L2 a. water. Explain any one method in detail. Define disinfection. Explain break point chlorination. b. 4 L₂ CO₃ List the different types of sewerage systems with their advantages and 10 L2 **CO4** disadvantages. Module - 4 Explain with a neat flow diagram the various treatment unit operations and 7 10 L₂ **CO4** process used in municipal wastewater treatment. What is meant by activated sludge process? Describe with sketch, the 10 CO₄ treatment of sewage by activated sludge process. OR Discuss briefly with a neat sketch grit chamber and oil an grease removal tank. 8 L₂ **CO4** 10 An average operating data for conventional activated sludge treatment plant is b. 10 L3 **CO4** as follows: Wastewater flow $= 35000 \text{ m}^3/\text{d}$ $= 10900 \text{ m}^3$ ii) Volume of aeration tank iii) Influent BOD = 250 mg/Liv) Effluent BOD = 20 mg/Lv) Mixed liquor suspended solids (MLSS) = 2500 mg/Lvi) Effluent suspended solids = 30 mg/Lvii) Waste sludge suspended solids = 9700 mg/Lviii) Quality of waste sludge $= 220 \text{ m}^3/\text{d}$ Based on the given information, Determine: i) Aeration period (hrs) ii) F/M ratio iii) Percentage efficiency of BOD removal iv) Sludge age (days). Module - 5 9 Explain with a neat sketch the construction and operation of a trickling filter. 10 L2 **CO4** a. Explain the following: b. 10 L2 **CO5** i) Rotating biological contactors ii) Aerobic and anaerobic process. OR Determine the volume depth and efficiency of a building filter unit for influent 10 L3 **CO4** sewage of 4.5 MLD, BOD₅ of the influent is 160 mg/L. The organic loading is to be 160 gm/m³/day and surface loading is 2000 l/m²/day. Explain the following: 10 L₂ **CO5** b. i) Oxidation pond

* * * * *

ii) Stages in sludge digestion process.