

USN	.v											BME515D
-----	----	--	--	--	--	--	--	--	--	--	--	---------

Fifth Semester B.E./B.Tech.Degree Examination, Dec.2024/Jan.2025 Energy Engineering

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

			Module – 1		M	L	C
Q.1	a.	Briefly expla	in the various steps involved in coal handling.	Y Total	10	L3	CO1
	b.	Explain the w	10	L3	CO ₁		
			OR				
Q.2	a.	Draw the laye	out of a diesel power plant.	//	10	L3	CO1
	b.	List and expl	ain the different methods of starting a diesel engine	e.	10	L3	CO1
			Module – 2				
Q.3	a.	Explain the s	olar radiation incident on the earth's surface.		10	L3	CO ₂
	b.	With the help	10	L3	CO ₂		
		from solar po					
			OR A	Q.			
Q.4	a.	Explain the v	working of floating drum biogas plant with a neat sl	ketch.	10	L3	CO3
	b.		working of down draft gasifier with a neat sketch.		10	L3	CO3
			Module – 3	,			
Q.5	a.	With a neat s	ketch, explain the working of Hot dry rock geother	mal plant.	10	L3	CO3
	b.		sketch, explain double basin arrangement of har		10	L3	CO3
		energy.					
			OR	4	201		
Q.6	a.	With a block	diagram, explain the basic components of wind er	nergy conversion	10	L3	CO3
		system.	35.535.0357				
	b.	With a neat s	nd machines.	10	L3	CO3	
			Module – 4				
Q.7	a.	With a neat s	ketch, explain pumped storage hydroelectric powe	r plant.	10	L3	CO3
	b.	The runoff da	ata of a river at a particular site is tabulated below		10	L4	CO3
		Month	Mean discharge per month				
			(millions of m ³)		1		
		January	40				
		February	25				
		March	20				
		April	10				
		May	0				
		June	50	i,	'		
		July	75				
		August	100				
		September	110				
		October	60				
		November	50				
		December	40				
		(i) Draw a					
					. 20		
			raw the flow duration curve. the power in MW available at mean flow if the h	nead available is			
			and overall efficiency of generation is 85%. Take				
	1	00 111	and overall efficiency of generation is 0370. Take	cach monun of		1	

		OR			
Q.8	a.	With a neat sketch, explain closed Rankine cycle OTEC system.	10	L3	CO ₂
167	b.	List the problems associated with Ocean Thermal Energy Conversion (OTEC).	4	L2	CO ₂
	c.	Explain the following terms related to hydroelectric power plant:	6	L3	CO3
		(i) Pen stock			
		(ii) Draft tube			
		Module – 5			
Q.9	a.	Explain the principle of release of nuclear energy by fusion and fission	10	L3	CO3
		reactions.			
	b.	Explain with a neat sketch, the general components of a nuclear reactor.	10	L3	CO3
		OR			
Q.10	a.	With a neat sketch, explain the working of Pressurized Water Reactor (PWR).	10	L3	CO3
-	b.	Explain the following:	10	L3	CO3
		(i) Reactor shielding			
		(ii) Radio active waste disposal.			

* * * * ;