

USN

Sixth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025

Process Control and Automation

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain with a neat sketch, the principles and operation of pressure measuring instruments.

 (10 Marks)
 - b. Describe on-line method of Biomass estimation.

(04 Marks)

- c. Define the following:
 - i) Instrumentation ii) Process control iii) Automation.

(06 Marks)

OR

2 a. With a neat sketch, explain flow injection analysis.

(10 Marks)

b. Explain with various modes of temperature measuring devices.

(10 Marks)

Module-2

a. Derive the transfer function of first order liquid level system.

(10 Marks)

b. Given a system with the transfer function $\frac{y(s)}{x(s)} = \frac{(\tau_1 s + 1)}{(\tau_2 s + 1)}$. Find y(t) if x(t) is a unit step

function. If $\frac{\tau_1}{\tau_2} = 5$. Sketch y(t) versus $\frac{t}{\tau_2}$ show the numerical values of minimum, maximum

and ultimate values that may occur during the transient.

(10 Marks)

OR

- 4 a. Define Linearization. With an example of liquid level system, explain the concept. (10 Marks)
 - b. With a neat sketch, explain the first order system for non-interacting system.

(10 Marks)

Module-3

5 a. Derive the transfer function for the 2^{nd} order system for a spring damper.

(10 Marks)

- b. Define and explain:
 - i) Overshoot ii) Rise time iii) y_{max} iv) Period of oscillation v) Peak time.

(10 Marks)

OR

6 a. What do you mean by transportation lag? Derive transfer function for transportation lag.

(10 Marks)

b. Explain the significance of damping ratio (ξ) graphically.

(04 Marks)

c. Derive an expression for the step response of non interacting multicapcity control system.

(06 Marks)

Module-4

7 a. What is FCE? Add a note on it.

(04 Marks)

b. Determine the overall transfer function C(s)/R(s) for the system shown in Fig Q7(b)

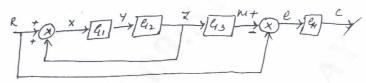


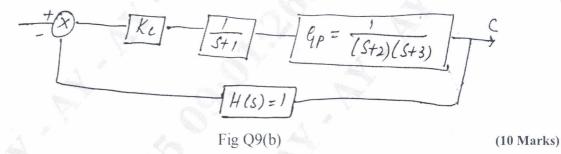
Fig Q7(b)

(06 Marks)

c. Derive an expression for Regulator control problem for negative feedback system.

(10 Marks)

OR


8 a. Define controller. Explain two mode controllers with example. (10 Marks)

b. In a PID controller the error is increased linearly at the rate of 5°C/min. The proportional sensitivity of the PID controller is 4, the reset rate is 1 and the derivative time τ_D is 0.5 min. Obtain the response equation. (10 Marks)

Module-5

9 a. Discuss the Routh test for stability, and theorems on Routh test. Add a note on merits and demerits of the same. (10 Marks)

b. Find: i) Characteristic equation ii) Determine the value of K_c for which control system is stable iii) For which value of K_c the control system is on the threshold of stability.

OR

10 a. Explain the rules for plotting the Root locus diagram.

(10 Marks)

b. Plot a Root locus, gives open loop transfer function $G H(s) = \frac{K_C}{s(s+1)(s+2)}$. Determine the value of K_c for which the control system is just unstable. (10 Marks)

* * * * *