CBCS SCHEME

USN	45			P					BBT502
001		1		1	1	1	1	1	

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Enzyme Technology + Lab

Time: 3 hrs.

UTE OF

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

MAND					
Control of the second		Module – 1	M	L	C
Q.1	a.	Define enzyme. Enumerate in detail the classification of enzymes.	10	L1	CO1
	b.	Discuss any two strategies to determine the purity of enzymes.	10	L2	CO2
		OR			
Q.2	a.	Distinguish between NAD and FAD, highlighting the mechanism and significance of both enzymes in catalysis.	10	L2	CO1
	b.	Compare acid-base catalysis, covalent catalysis and metal-ion catalysis. Add a note on substrate-strain hypothesis.	10	L2	CO1
		Module – 2			
Q.3	a.	Explain in detail the fixed incubation method of enzyme measurement.	10	L1	CO1
	b.	Elucidate in detail the advantages of biocatalyst over chemical catalyst.	10	L2	CO1
		OR			
Q.4	a.	Outline the various parameters considered for standardization and optimization of enzyme assays.	10	L2	CO2
	b.	Differentiate between isolated enzymes and whole cell systems. Add a note on applications of extremozymes.	10	L2	CO1
		Module – 3			
Q.5	a.	Illustrate different methods of enzyme immobilization. Add a note on the advantages and disadvantages of each method.	12	L2	CO2
	b.	"Immobilized enzymes are economical compared to free enzymes". Justify the statement upholding the economic argument for immobilization.	8	L4	CO2
		OR			
Q.6	a.	Describe the design and configuration of different immobilized enzyme reactors.	12	L2	CO2
	b.	Infer on the effect of solute partition and diffusion on kinetics of immobilized enzymes.	8	L4	CO2
9	•	1 of 2			

				BB	T502
		Module – 4			
Q.7	a.	Discuss in detail the design and construction of novel enzymes.	10	L2	CO
	b.	Co-relate the role of enzymes in biotransformation of drugs by citing suitable examples.	10	L3	CO2
		OR			
Q.8	a.	Explain in detail on host-guest complexion chemistry.	10	L1	CO
	b.	Define synzymes. Can their performance be comparable to that of native enzymes? Justify your answer.	10	L4	CO2
Q.9	a.	Module – 5 Highlight the role of different diagnostic enzymes in medicine industry.	10	L2	CO3
	la	"The role of different enzymes in food and beverage industry is	10	1.2	
	b.	incomparable". Substantiate the above statement.	10	L3	CO3
		OR 4			
Q.10	a.	Outline the role of differnet enzymes (any 5) used in the detergent industry.	10	L2	CO
	b.	With suitable examples (any 5) elucidate the significance of different therapeutic enzymes.	10	L2	CO3
		therapeutic enzymes.			
		2 of 2			