or the state of th	13					
USN	10			×		
w 24 0	THE !					

BCS503

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Theory of Computation

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Define the following with example: i) Language ii) String iii) Power of an alphabet.	3	L1	CO1
	b.	 Define DFA. Draw a DFA to accepts. i) The set of all strings that contain a substring aba. ii) To accept the stings of a's and b's that contain not more than there b's. iii) L = {w ∈ {a, b}** : No 2 consecutive characters are same in w}. 	10	L3	CO1
	c.	Convert the following NFA to DFA.	7	L2	CO1
		OR	1	1	
Q.2	a.	Define the following with example: i) Alphabet ii) Reversal of string iii) Concatenation of Languages.	3	L1	CO1
	b.	Design a DFA for the Language : $L = \{w \in \{0, 1\}^* : w \text{ is a string divisible by 5}\}.$	7	L3	CO1
	c.	Define NFA. Obtain an ϵ - NFA which accepts strings consisting of 0 or more a's , followed by 0 or more b's followed by 0 or more C's. Also convert it to DFA.	10	L2	CO1
		Module – 2			
Q.3	a.	 Define Regular expression. Write the regular expression for the following languages: i) Strings of a's and b's starting with a and ending with b. ii) Set of strings that consists of alternating 0's and 1's. iii) L = {aⁿ bm, (n + m) is even}. iv) L = {w:/w/mod 3 = 0, where w ∈ {a, b}*}. 	10	L2	CO2
					*

	b.	Minimize the following finite automata using Table filling algorithm : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	L2	CO2
Q.4	a.	Construct ε - NFA for the following Regular expression: i) $(0+1) \ 0 \ 1(1+0)$ ii) $1(0+1)^* \ 0$ iii) $(0+1)^* \ 0 \ 1 \ 1^*$	6	L1	CO2
	b.	Obtain the Regular expression that denotes the language accepted by Fig. Q4(b). Fig. Q4(b) Using Kleene's theorem.	6	L3	CO2
	c.	State the Pumping Lemma for the Regular Languages. And also prove that the following languages are note regular. i) $L = \{0^n \ 1^m \ \ n \le m\}$ ii) $L = \{0^n \ 1^m \ 2^n \ \ n, \ m \ge 1\}$.	8	L1	CO2
Q.5	a.		10	L3	CO3
	b.	Consider the grammar G with productions. $S \rightarrow A \ b \ B \ / A \ B$; $A \rightarrow a A \ / \epsilon$; $B \rightarrow a \ B \ / b \ B \ / \epsilon$. Obtain LMD, RMD and parse tree for the string aaabab. Is the given grammar ambiguous?	10	L2	CO3
		OR	1	1	1
Q.6	a.	Define the following with example: i) Context free grammar ii) Left most Derivation iii) Parse tree iv) Ambiguous grammar.	4	L1	CO3
	b.	Design PDA for the language : $L=\{a^i\ b^j\ c^k\ /\ i+k=j\ ,\ i\geq 0\ ,\ k\geq 0\} \ \text{and show the moves made by the PDA} $ for the string aabbbc.	10	L3	C03

	c.	Convert the following CFG's to PDA: $S \rightarrow a A$; $A \rightarrow a ABC/bB/a$; $B \rightarrow b$; $C \rightarrow c$.	6	L2	CO3
		Module – 4			
Q.7	a.	Define CNF. Convert the following CFG to CNF $E \rightarrow E + T/T$ $T \rightarrow T * F/F$ $F \rightarrow (E)/I$ $I \rightarrow Ia/Ib/a/b.$	10	L2	CO4
	b.	Show that $L = \{0^n \ 1^n \ 2n \ / \ n \ge 1\}$ is no context free.	4	L2	CO4
	c.	Prove that the family of context free languages is closed under union and concatenation.	6	L1	CO4
		OR			
Q.8	a.	Define Greibach Normal Form. Convert the following CFG to GNF. $S \rightarrow AB$; $A \rightarrow aA/bB/b$; $B \rightarrow b$.	6	L2	CO4
	b.	Consider the following CFG: S → ABC / BaB A → aA / BaC / aaa B → bBb / a / D C → CA / AC D → ε i) What are useless symbols? ii) Eliminate ε - productions, Unit productions and useless symbols from the grammar.	10	L3	CO4
	c.	Prove that the following languages are not context free. i) $L = \{ai / i \text{ is prime}\}$ ii) $L = \{a^{n^2} / n \ge 1\}$.	4	L2	CO3
		Module – 5	L		
Q.9	a.	Define a turing machine and explain with neat diagram, the working of a basic turing machine.	6	L1	CO4
	b.	Design a Turing machine to accept the language, $L = \{a^n \ b^n \ c^n / n \ge 1\}$. Draw the transition diagram and show the moves for the string aabbcc.	14	L4	CO4
		OR			
Q.10	a.	Design a Turing machine to accept palindrome over {a, b} and draw the transition diagram.	12	L4	CO5
	b.	Write a short notes on: i) Recursively Enumerable Language. ii) Multitape Turing Machine.	8	L1	CO5

* * * * *