Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Analysis and Design of Algorithms

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Explain the various steps in algorithm design and analysis process with the flow diagram.	08	L1	COI
	b.	Give formal and informal definitions of asymptotic notations.	06	L1	CO
	c.	Explain the general plan of mathematical analysis of recursive algorithm with an example.	06	L1	CO
		OR			
Q.2	a.	Design algorithm for tower of Hanoi problem and obtain time complexity.	10	L1	CO
	b.	Write an algorithm to search an element in an array using sequential search. Discuss the best case, worst case and average case efficiency of this algorithm.	10	L1	CO
	1	Module – 2			
Q.3	a.	Write an algorithm to sort the numbers using insertion sort. Discuss its efficiency.	10	L2	CO2
	b.	Design quick sort algorithm and obtain its best, average and worst case efficiency.	10	L2	CO2
		OR			
Q.4	a.	Write merge sort algorithm and sort the list E X A M P L E.	08	L2	CO
	b.	Apply the DFS based algorithm to solve the topological sorting problem for the following graph, Fig.Q4(b) Fig.Q4(b)	06	L3	CO2
	c.	Write algorithm for pre-order, post order and in order traversals of a tree. Write pre-order, in-order and post order for the given tree.	06	L2	CO2
		Fig.Q4(c)			
		1 of 3			

		Module – 3			
Q.5	a.	Define AVL tree. Construct AVL tree for the list 5, 6, 8, 3, 2, 4, 7.	10	L3	CO3
	b.	Define heap. Sort the following lists by heapsort:	10	L3	CO3
		H E A P S O R T (in alphabetical order)			
		OR			
Q.6	a.	Write the algorithm for comparison counting sort. Discuss its efficiency.	10	L2	CO ₄
	b.	Design Horspools algorithm for string matching. Apply Horspools algorithm to find the pattern BARBER on the text JIM SAW ME IN BARBERSHOP	10	L3	CO ₄
	1	Module – 4			
Q.7	a.	Write Warshall's algorithm and apply the same to compute transitive closure of a directed graph. a b c d e	10	L3	CO3
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	b.	Construct minimum cost spanning tree using Kruskal's algorithm for the following graph, Fig.Q7(b).	10	L3	CO ⁴
		10 70 20 A 2 30 S 30			
		Fig.Q7(b)			
		OR			
Q.8	a.	Solve the following single source shortest path problem assuming vertex '5' as the source. 45 15 10 20 15 10 30 45 Fig.Q8(a)	10	L3	CO ₄
	b.	word for the following: Character A B C D E - Probability 0.5 0.35 0.5 0.1 0.4 0.2 Encode the text DAD_CBE.			CO
		Module – 5			
Q.9	a.	Explain the following with example: (i) P problem (ii) NP problem	06	L1 L2	CO
	b.	insertion sort.			CO
	c.	Construct state space tree to solve 4 queens problem.	06	L3	CO:

T	~	0	4	0	1
В	•	3	4	Ð	1

				(OR .			
Q.10	a.	What is backtracking? Apply back tracking to solve the below instance of					L3	CO6
		sum of subset problem: $s = \{3, 5, 6, 7\}, d = 15$						
	b. Solve the following instance of knapsack problem using branch and bound					10	L4	CO6
		technique knaps	technique knapsack capacity = 10.					
		Ite	m Weig	ht Value				
		1	4	40				
		2	7	42				
		3	5	25				
		4	3	12				
					\$46.00			