			1		
AND REAL PROPERTY OF THE PARTY					
Company of the Wall of the Company o					1
The second secon		1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in the second				
D. 1 43 6th 1 1 1 1 1 1 1 1					

BAI515A

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Computer Vision

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C		
Q.1	a.	What is Compute Vision? Why is vision so difficult? Discuss the real -	10	L1	CO1		
		world examples of computer vision.					
	b.	Explain the behavior of pinhole camera under different effects using a clear	10	L2	CO1		
		illustration to show the real-world example.					
		OR					
Q.2	a.	Explain the phong shading model.					
	b.	Explain the Di-chromatic reflectance model.	5	L2	CO1		
	c.	What is meant by image filtering? Clearly discuss types of filter.	7	L1	CO1		
			•				
		Module – 2					
Q.3	a.	Differentiate between a linear spatial filter and a non-linear spatial filter.	10	L2	CO ₂		
_		Explain why bilateral filtering is quite show compared to regular separable	4				
		filtering.					
	b.	Explain the binary image processing. Obtain the distance transform D(i, j)	10	L2	CO ₂		
		of a binary image B(i, j).					
		OR					
Q.4	a.	Explain the derivation of Discrete Fourier Transform (DFT) form the	10	L2	CO ₂		
		continuous transform of the sampled function.	×				
	b.	What are the geometric transformation? Explain the forward warping	10	L1	CO ₃		
		algorithm for transforming an image.	j×.				
		Module - 3					
Q.5	a.	Give the probability density functions for Gaussion noise model and	10	L1	CO3		
		Rayleigh noise models.					
	b.	Discuss the noise reduction capabilities of the following spatial filters:	10	L1	CO3		
		i) Arithmetic mean filter					
		ii) Geometric mean filter.					
		OR					
Q.6	a.	Explain the image gradient and its properties.	10	L2 L2	CO3		
	b.	Explain the following gradient operators:					
		i) Roberts cross –gradient operators					
		ii) Sobel operator					
		iii) Prewitt operator					
		iv) Laplacian operator.					
		1 of 2					

Q.7	a.	Define the pseudocolor processing of digital images. Explain the graphical	10	L2	CO ₄	
		a. Define the pseudocolor processing of digital images. Explain the graphical interpretation of the intensity slicing technique.				
	b.	Discuss the procedure for conversion from RGB color model to HIS color model.	10	L2	CO4	
	•	OR	•			
Q.8	a.	Illustrate how full-color images are handled for a variety of image processing tasks.	10	L2	CO4	
	b.	Explain the color image smoothing and sharpening procedure.	10	L2	CO4	
Q.9	a.			L2	COS	
		structuring elements.	10	T 0	604	
	b.	Write short notes on the following: i) Erosin ii) Dialation.	10	L2	COS	
		OR				
		T	1	1		
Q.10	a.	Explain the procedures in the "boundary following" algorithm that traces the boundary in binary image.	10	L2	CO5	

* * * * *