Sixth Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Finite Element Method**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain different coordinate systems used in Finite Element Method. 1 (06 Marks)
 - Explain compatibility and convergence requirement of shape function. (06 Marks)
 - Derive the shape function and stiffness matrix for 1-D linear bar element. (08 Marks)

- Explain plane stress and plane strain problems in FEA. 2 (10 Marks)
 - b. Discuss about various elements used in Finite Element Method. (10 Marks)

Module-2

- Consider a bar a shown in Fig Q3, an axial load of 200 kN is applied at point 'P'. 3 Take $A_1 = 2400 \text{ mm}^2$, $E_1 = 70 \text{ GPa}$, $A_2 = 600 \text{ mm}^2$, $E^2 = 200 \text{ GPa}$. Calculate :
 - The nodal displacements
 - Stresses in each material
 - iii) Reaction forces at supports

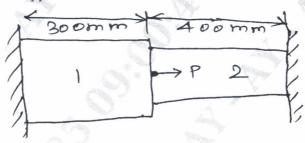


Fig Q3

(20 Marks)

OR

For the two bar truss shown in Fig Q4. Determine the displacement of node 1 and the stress in element 1-3. (20 Marks)

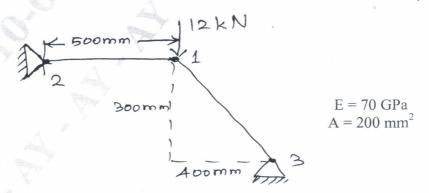


Fig Q4

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-3

- a. Distinguish between Lagrange elements and Serentipity elements. (08 Marks)
 - b. Determine the shape function N₁, N₂ and N₃ at the interior point P for the triangular elements shown in Fig Q5(b).

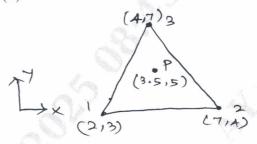


Fig Q5(b)

(12 Marks)

OR

- Derive shape function for Hexahedral element. (12 Marks)
 - Explain different types of higher order elements used in FEA. (08 Marks)

Module-4

Explain ISO parametric, sub parametric and super parametric elements. (10 Marks) b. Explain briefly preprocessing processing and post processing used in FEA. (10 Marks)

OR

- a. Explain Axisymmetric formulation. (04 Marks)
 - b. Derive strain-displacement matrix for an Axisymmetric Triangular element. (16 Marks)

Module-5

A wall of 0.6m thickness having thermal conductivity of 1.2 W/mK. The wall is to be 9 insulated with a material of thickness 0.06m having an average thermal conductivity of 0.3 W/mK. The inner surface temperature is 1000°C and outside of the insulation is exposed at atmospheric air at 30°C with heat transfer coefficient of 35 W/m²K. Find the nodal temperature. (20 Marks)

OR

For the one dimensional bar shown in Fig Q10, determine the natural frequencies of 10 longitudinal vibration using two elements of equal length. Take E = 2 × 10⁵ N/mm², $\rho = 0.8 \times 10^{-4} \text{ N/mm}^3, L = 400 \text{ mm}.$

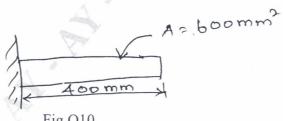


Fig Q10

(20 Marks)