Γ			
LICH			
0311			

BAE304

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Calculate the body forces in order to achieve static equilibrium. $\sigma_{xx}=12x^2y^2z\;, \sigma_{yy}=-9x^3y^2\;, \sigma_{zz}=4y^2z^3\;, \tau_{xy}=4y^3\;, \tau_{yz}=16x^3yz\;,$ $\tau_{xz}=-12xy^2z^2\;$	10	L3	CO1
	b.	Given displacement field, $u = 3x^4 + 2x^2y^2 + x + y + z^3 + 3$ $v = 3xy + y^3 + y^2z + z^2 + 1$ $w = x^2 + xy + yz + xz + y^2 + z^2 + 2$ Compute the associated strains.	5	L3	CO1
	c.	Explain the stress strain curve for brittle and ductile materials with neat sketch.	5	L2	CO1
		OR .			
Q.2	a.	A steel rod of cross sectional area of 50 mm ² is subjected to the loading as shown in Fig. Q2 (a). Determine the displacement of its end A and D. Take E = 200 GPa. A steel rod of cross sectional area of 50 mm ² is subjected to the loading as shown in Fig. Q2 (a). Take E = 200 GPa. Fig.Q2 (a)	10	L3	CO1
	b.	Determine the principal stresses, the maximum in plane shear stress and average normal stress for a element as shown in Fig. Q2 (b). Draw Mohr Circle. SomPa Fig. Q2 (b) Module – 2	10	L3	CO1
Q.3	a.	Draw free body diagram of roller support, pinned support and fixed support	10	L3	CO2
X.		are used in different beams as shown in Fig. Q3 (a) and find reaction forces. Fig. Q3 (a)			

	b.	Draw shear force and bending moment diagram of the beam shown in	10	L3	CO2
	р.	Fig. Q3 (b).	10	LIS	CO2
		W(N/m)			
		Fig. Q3 (b)			
		OR			
Q.4	a.	Derive the bending flexure formula of a beam subjected to pure bending.	10	L2	CO ₂
	b.	Draw shear force and bending moment diagram of the beam shown in	10	L3	CO ₂
		Fig. Q4 (b).			
		W (N/m)			
		Fig. Q4 (b)			
0.5	1	Module – 3	10	× 0	000
Q.5	a.	Determine the slope and deflection at the free end of the Cantilever beam.	10	L3	CO2
		Take E = 200 GPa and $I = 65 \times 10^6 \text{ mm}^4$.			*
		1			
		206N·m			
		3m			
		Fig. Q5 (a)			
	b.	Determine the slope and deflection of the Cantilever beam subjected to a	10	L3	CO2
		loading as shown in Fig. Q5 (b).			
		w (N/m)			
		ATJ. J. A. L. L. L.			
		K			
		Fig. Q5 (b)	7		
		OR		ı	4
Q.6	a.	1 1	10	L3	CO2
		100 mm subjected to a torque of 40 N.m. Determine the shear stress	,		
	1. 1	developed in the material at the inner and outer walls.			
	b.		10	L3	CO ₂
		Calculate the maximum shear stress induced in the shaft and the angle of			
		twist in degrees for a length of 6 m. Take torsional rigidity,			
		$GJ = 8 \times 10^4 \text{ N/mm}^2.$			
0 =		Module – 4			
Q.7		Write short notes on:	20	L2	CO2
		a. Saint-Venant's principle			
		b. Strain energyc. Reciprocity theorem			
		c. Reciprocity theoremd. Principle of minimum total potential energy.			
		1 incipie of infilling total potential energy.			

a.		10	1.3	CO
		10	113	
	uniformly distributed load $W = 2 \text{ KN/m}$.			
b.	Explain the principle of virtual work and apply it to determine the reaction	10	L3	CO
	force in a Cantilever beam with a point load at the free end.			
-	Module – 5			
a.	Describe the different types of fractures in materials. Discuss the	10	L2	CO
,		10	Y 0	00
D.		10	L2	CO
	2 A			
	OR			
a.		10	L2	CO
h.		10	1.2	CO
	Describe the 5 Ty diagram in langue and interpretation of langue me.	10		

	2 - 62			
	3 01 3			
	a. b.	L = 4 m, E = 200 GPa, and Moment of inertia I = 8×10 ⁻⁶ m ⁴ subjected to a uniformly distributed load W = 2 KN/m. b. Explain the principle of virtual work and apply it to determine the reaction force in a Cantilever beam with a point load at the free end. Module - 5 a. Describe the different types of fractures in materials. Discuss the characteristics and mechanisms of each type. b. Explain the phenomenon of creep in materials. Describe the three stages of creep with examples. OR a. Discuss fatigue and types of fatigue loading with examples. Explain the mechanism of fatigue failure in metals. b. Describe the S-N diagram in fatigue and interpretation of fatigue life.	a. Calculate the strain energy stored in simply supported beam of length L = 4 m, E = 200 GPa, and Moment of inertia I = 8×10 ⁻⁶ m ⁴ subjected to a uniformly distributed load W = 2 KN/m. b. Explain the principle of virtual work and apply it to determine the reaction force in a Cantilever beam with a point load at the free end. Module - 5	a. Calculate the strain energy stored in simply supported beam of length L 4 m, E = 200 GPa, and Moment of inertia I = 8×10° m ⁴ subjected to a uniformly distributed load W = 2 KN/m. b. Explain the principle of virtual work and apply it to determine the reaction force in a Cantilever beam with a point load at the free end. Module - 5