

ACHARYA'S NRV SCHOOL OF ARCHITECTURE

SOLADEVANAHALLI, BENGALURU -560107

বস্ত্র UNNATA – Innovation in Industrial Architecture for Advanced
Semiconductor Fabrication

ARCHITECTURE DESIGN PROJECT (THESIS) – 2024-25

Submitted in partial fulfillment of the Requirements for the "Bachelor of Architecture" Degree Course

Submitted by : AISHWARYA V

USN : 1AA20AT006

Guide : AR. HARSHA JOSHI

A project report submitted to

VISVESHWARAYA TECHNOLOGICAL UNIVERSITY

"Jnana Sangama", Machhe, Belgaum – 590018

ವಿಶ್ವಶದ್ವಯ್ಯತಾಂತಿಕ ವಿಶ್ವವಿದ್ಯಾಯ, ಬೆಳಗಾವಿ - ೫೯೦೦೧೮

CERTIFICATE

This is to certify that this thesis report titled UNNATA by AISHWARYA V of IX

SEMESTER B. Arch, USN No. 1AA20AT006, has been submitted in partial

fulfillment of the requirements for the award of under graduate degree Bachelor

of Architecture (B.Arch) by Visveshwaraya Technological University VTU,

Belgaum during the year 2024-25.

Guide: Ar. Harsha Joshi

Principal

Examined by:

1)Internal Examiner

2)External examiner 1 :

3)External examiner 2:

Acharya's NRV School of Architecture, Bangalore

Certificate of Plagiarism Check for Thesis

Author Name	Miss. Aishwarya V.
Course of Study	B. Arch.
Name of Guide	Ar. Harsha Joshi
Department	Architecture
Acceptable Maximum Limit	>30%
Submitted By	parasappavajjaramatti@acharya.ac.in
Paper Title	ਰ ਮ ਰ UNNATA – Innovation in Industrial Architecture Advanced Semiconductor Fabrication
Similarity	5%
Paper ID	2558859
Total Pages	113
Submission Date	2024-11-21 16:31:06

Signature of Student

Signature of Guide

Librarian

Principal

^{*} This report has been generated by DrillBit Anti-Plagiarism Software

DECLARATION

This thesis title "UNNATA", submitted in partial fulfillment of the requirement for the award of the under graduate of Bachelor of architecture is my original work to the best of my knowledge.

The sources for the various information and the data used have been duly acknowledged.

The work has not been submitted or provided to any other institution/ organization for any diploma/degree or any other purpose.

I take full responsibility for the content in this report and in the event of any conflict or dispute if any, hereby indemnify Acharya's NRV School of Architecture and Visveshwaraya Technological University, Belagavi, and its official representatives against any damages that any raise thereof.

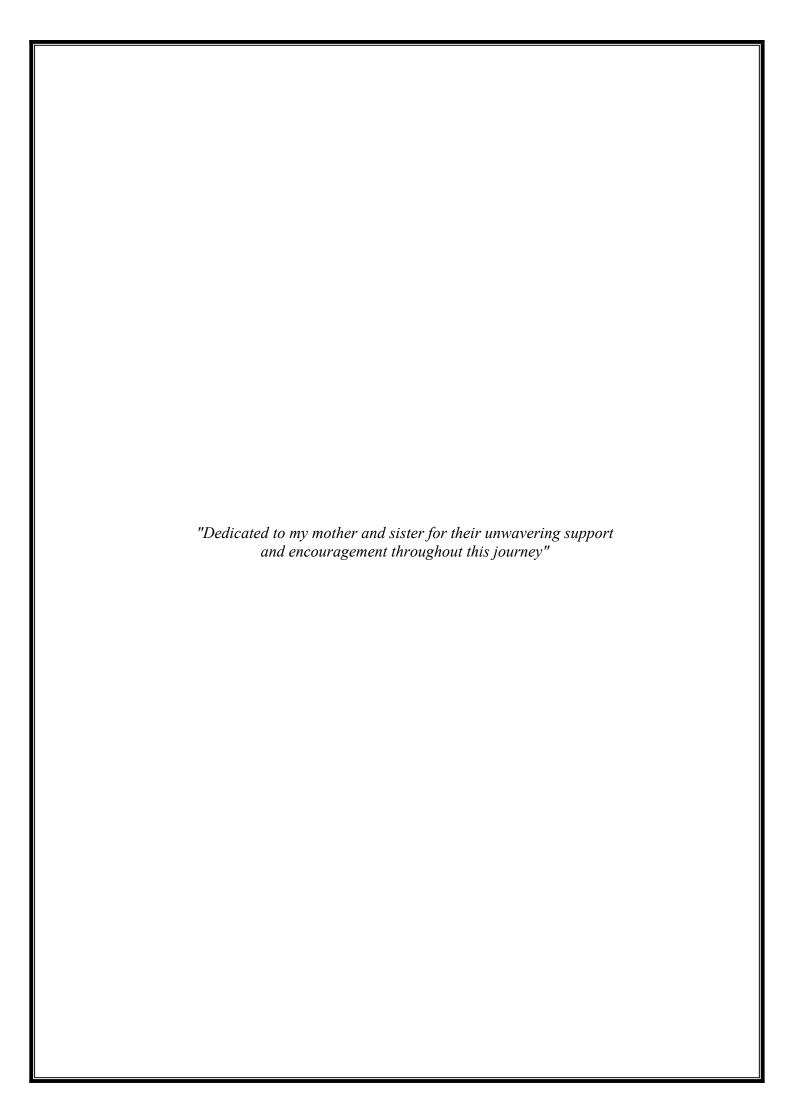
AISHWARYA V

1AA20AT006

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to my **mother** and **sister** for their unwavering support and encouragement throughout this journey. Their belief in me has been a constant source of strength.

I would like to express my deepest gratitude to Ar. Harsha Joshi for her unwavering support, insightful guidance, and encouragement throughout this thesis. Her expertise has been instrumental in shaping my work and pushing me to explore design with confidence and clarity.


I extend my sincere appreciation to our Principal, Prof. Ar. Sanjyot Shah, for fostering a conducive learning environment at Acharya's NRV school of Architecture, which has enabled me to explore my potential.

I am also deeply grateful to the faculty members of Acharya's NRV school of Architecture, whose guidance and support have been pivotal in refining my ideas and skills. Their expertise and constructive criticism have significantly enhanced the quality of my work.

Lastly, I thank my family, friends, and peers for their constant encouragement and motivation.

ABSTRACT

UNNATA, focuses on designing an Outsourced Semiconductor Assembly and Testing (OSAT) facility that reflects my academic growth and aspirations as an architect. I aim to merge technical functionality with creative solutions, emphasizing the design of efficient, sustainable industrial spaces. UNNATA addresses the complexities of high-tech industrial architecture and embodies my commitment to creating innovative, inclusive, and sustainable environments that meet the evolving needs of technology and society.

TABLE OF CONTENTS

Cł	HAPTER	NO. TITLE	PAGE NO.
		ACKNOWLEDGEMENT	iii
		ABSTRACT	iv
		LIST OF TABLES	v
		LIST OF FIGURES	vi
1	INTR	ODUCTION	
	1.1	BACKGROUND STUDY	
		1.1.1 What is Industrial Architecture	1
		1.1.2 History of Semiconductor Industry	2
		1.1.3 Semiconductor Ecosystem	6
		1.1.4 Semiconductor Industry in Karnataka	8
		1.1.5 Government Initiatives	9
		1.1.6 Need of Identification	11
	1.2	Focus of the thesis	
		1.2.1 Introduction	12
		1.2.2 What is semiconductor	12
		1.2.3 What is the Semiconductor Industry	12
		1.2.4 Aim	12
		1.2.5 Objective	13
		1.2.6 Gap analysis	13
		1.2.7 Applicable theories	13
		1.2.8 Principle activities and User groups	14
		1.2.9 Justification	14
	1.3	Methodology	15
	1.4	Scope and limitations	
		1.4.1 Scope	17
		1.4.2 Limitation	17

2	LITERATURE REVIEW	
	2.1 Literature Review-A	
	2.1.1 Semiconductors	18
	2.1.2 Start of Semiconductors	18
	2.1.3 Important of Semiconductor Industry	18
	2.1.4 Semiconductor Marketing	18
	2.1.5 OSAT	18
	2.2 Literature Review – B (Technical Foundation)	
	2.2.1 Logistics	20
	2.2.2 Traffic circulation	20
	2.2.3 Site planning strategy	20
	2.2.4 Organization of Industry Land use	20
	2.2.5 Machinery and spaces	21
	2.3 Literature Review – C (Program formulation guidelines)	
	2.3.1 Theoretical Urban Catchment Population	26
	2.3.2 Future Annual Throughput	26
	2.3.3 Turn over standards	26
	2.3.4 Consumption estimate	27
3	CASE STUDIES	
	3.1 National Literature Study	
	3.1.1 Semi-Conductor Laboratory	28
	3.2 Green Features and Sustainable technologies	
	3.2.1 CII Sohrabji Godrej Green Business Centre	32
	1 7 81 7	38 41
	3.3 International Literature Study	
	3.3.1 WUXI Memsic Semiconductor Headquarters	44
	3.3.2 Huga Fab III and Headquarters Building	47
	3.3.3 Massachusetts Institute of Technology	51
		54
	3.4 Special Case Study	• •
	3.4.1 Taiwan Semiconductor Manufacturing Company Limited (TSMC)	58

	3.4.2 Sustainable Architecture in Industry	59
	3.4.3 Structural Case Study	
	3.4.3.1 Richard Rogers – Lloyd's Building	61
	3.4.3.2 Zaha Hadid's – BMW Central Building	62
	3.4 Comparative Analysis	64
4	SITE ANALYSIS	
	4.1 Site Introduction	68
	4.2 About Site	68
	4.3 Selection Advantage	69
	4.4 Context and Connectivity	69
	4.5 Climate study	70
	4.6 Infrastructure	71
	4.7 Traffic Analysis	71
	4.8 Vegetation and Sensory	71
	4.9 SWOT analysis	72
5	DESIGN PROCESS	
	5.1 Bye laws	73
	5.2 National Building Code (NBC) and Indian Standards (IS)	73
	5.3 Standards for Production and Warehouse	80
	5.4 Zoning	88
	5.5 Area Requirement	89
	5.6 Concept	105
	5.7 Bubble diagram	107
	5.8 Detailed drawings	108
	5.8.1 Master plan	
	5.8.2 Site plan	
	5.8.3 Plans, elevations, sections	
	5.8.4 Views	
6	BIBLIOGRAPHY	109
7	PLAGARISM REPORT	110

LIST OF TABLES

Table 1.1.1 Actions Needed to Address Challenges in the Semiconductor	
Industry in Bengaluru	11
Table 2.2.5.1 Types of Machinery	21
Table 2.2.5.2 Architectural building type	24
Table 2.2.5.3 Services	24
Table 2.2.5.4 OSAT Standard Requirement	25
Table 2.2.1.1 Urban Catchment Population	26
Table 2.2.2.1 Future Annual Throughput	26
Table 2.2.3.1 Turnover Standards	26
Table 2.2.4.1 Consumption Estimate	27
Table 3.1.1.1 Area Statement	29
Table 3.2.1.1 Area Statement	35
Table 3.2.2.1 Area Statement	38
Table 3.2.3.1 Area Statement	41
Table 3.3.1.1 Zoning and Area Statement	45
Table 3.3.2.1 Architectural features	49
Table 3.3.2.2 Area statement	49
Table 3.4.4.1	64
Table 3.4.4.2	65
Table 3.4.4.3	66
Table 3.4.4.4	67
Table 5.5.1 Administration block	91
Table 5.5.2 R&D block	93
Table 5.5.3 OSAT/Manufacturing block	95
Table 5.5.4 Institute block	97
Table 5.5.5 Warehouse	100
Table 5.5.6 Logistic department	103

LIST OF FIGURES

Figure 1.1.1 Industrial Revolution	2
Figure 1.1.2 Importance of Industrial Architecture	2
Figure 1.1.3 Aim	3
Figure 1.1.4 Negative impacts	3
Figure 1.1.5 Pie chart of landuse in India	4
Figure 1.1.2.1 Stages in Semiconductor Value Chain	6
Figure 1.1.3.1 IDM Ecosystem	7
Figure 1.1.3.2 Need to run a Fab	7
Figure 1.1.5.1 Potential Clusters for the Setting up of Fabs	9
Figure 1.1.5.2 Government approved establishment	9
Figure 1.1.5.3 Location of proposed site in Bengaluru airport	10
Figure 1.1.5.4 News article	10
Figure 1.2.1 Aim	12
Figure 1.2.2 Objective	13
Figure 3.1.1.1 Location of SCL	28
Figure 3.1.1.2 Conceptual Plan	31
Figure 3.2.1.1 Location	32
Figure 3.2.1.2 Site Plan	33
Figure 3.2.1.3 Influential factors and Materials	34
Figure 3.2.1.4 Accessibility	34
Figure 3.2.1.5 Spatial Organization	35
Figure 3.2.1.6 Plan	35
Figure 3.2.1.7 Light wells	35
Figure 3.2.1.8 View	36
Figure 3.2.1.9 Section through the Jali	36
Figure 3.2.1.10 Roof Garden	36
Figure 3.2.1.11 Wastewater treatment: Root Zone Treatment	36
Figure 3.2.1.12 Wind tower	37
Figure 3.2.1.13 Vegetation and shadow analysis	37
Figure 3.2.2.1 Location and connectivity	38
Figure 3.2.2.2 Design strategies	39
Figure 3.2.2.3 Master Plan and views	39

Figure 3.2.2.4 Climatic Actions	40
Figure 3.2.3.1 Conceptual Plan	42
Figure 3.2.3.2 Sheltered walkways	43
Figure 3.2.3.3 Saw-tooth Facade	43
Figure 3.2.3.4 Material	43
Figure 3.3.1.1 View of the building	44
Figure 3.3.1.2 South elevation sleek lines, modern aesthetic	45
Figure 3.3.1.3 Large windows for natural lighting, energy efficiency	45
Figure 3.3.1.4 Yin-Yang theory	45
Figure 3.3.1.5 Views and Materials used	46
Figure 3.3.2.1 Location and view of the building	47
Figure 3.3.2.2 West Elevation	48
Figure 3.3.2.3 Views & Structural elements	48
Figure 3.3.2.4 Longitudinal section	48
Figure 3.3.2.5 Typical floor plan	50
Figure 3.3.2.6 6th floor plan	50
Figure 3.3.2.7 Ground floor plan	50
Figure 3.3.3.1 Location	51
Figure 3.3.3.2 Hallway	52
Figure 3.3.3.3 View	52
Figure 3.3.3.4 Soaring glass facades and powerful air-exchange systems	52
Figure 3.3.3.5 Section facing North	53
Figure 3.3.4.1 Conceptual section	55
Figure 3.3.4.2 Natural ventilation and day-lighting	55
Figure 3.3.4.3 Smart Technologies	56
Figure 3.3.4.4 Window	56
Figure 3.3.4.5 Cross Section	57
Figure 3.4.1.1 TSMC	58
Figure 3.4.2.1 Sustainable Architecture	59
Figure 3.4.2.2 Eco-Design Intersection	59
Figure 3.4.2.3 Net zero building	60
Figure 3.4.2.4 Green Architecture	60
Figure 3.4.3.2.1Building entrance view	62
Figure 4.1.1 Location	68

Figure 4.4.1 Context and connectivity	69
Figure 4.5.1 Annual rainfall	70
Figure 4.5.2 Pollution	70
Figure 4.5.3 Annual temperature	70
Figure 4.6.1 Infrastructure	71
Figure 4.7.1 Traffic analysis	71
Figure 4.8.1 Vegetation	71
Figure 4.8.2 Site views	72
Figure 5.3.1 Shed Construction	82
Figure 5.3.2 Industry Transport	85
Figure 5.3.3 Loading yard	87
Figure 5.4.1 Site Zoning	88
Figure 5.6.1 Biophilic architecture	105
Figure 5.6.2 Minimalistic	105
Figure 5.6.3 Conceptual sketches	106