First Semester MCA Degree Examination, June/July 2024 Design and Analysis of Algorithm

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

Module - 1	C CO1 CO2 CO2 CO2
types of an algorithm. b. Explain asymptotic notations with an appropriate graphical representation. OR Q.2 a. Design a general plan for analyzing the non recursive algorithm. Provide an example for the same. b. Design a general plan for analyzing recursive algorithm and explain with an example. Module – 2 Q.3 a. Design a binary search algorithm. Derive its time efficiency. b. Apply Strassen's matrix multiplication method to multiply the given two matrices below. Give its time efficiency. [4 3] [2 5]	CO2 CO2
b. Explain asymptotic notations with an appropriate graphical representation. OR Q.2 a. Design a general plan for analyzing the non recursive algorithm. Provide an example for the same. b. Design a general plan for analyzing recursive algorithm and explain with an example. Module – 2 Q.3 a. Design a binary search algorithm. Derive its time efficiency. b. Apply Strassen's matrix multiplication method to multiply the given two matrices below. Give its time efficiency. [4 3] [2 5]	CO2
Q.2 a. Design a general plan for analyzing the non recursive algorithm. Provide an example for the same. b. Design a general plan for analyzing recursive algorithm and explain with an example. Module – 2 Q.3 a. Design a binary search algorithm. Derive its time efficiency. b. Apply Strassen's matrix multiplication method to multiply the given two matrices below. Give its time efficiency. [4 3] × [2 5]	CO2
example for the same. b. Design a general plan for analyzing recursive algorithm and explain with an example. Module – 2 Q.3 a. Design a binary search algorithm. Derive its time efficiency. b. Apply Strassen's matrix multiplication method to multiply the given two matrices below. Give its time efficiency. [4 3] × [2 5]	CO2
example. Module - 2	CO2
 Q.3 a. Design a binary search algorithm. Derive its time efficiency. b. Apply Strassen's matrix multiplication method to multiply the given two matrices below. Give its time efficiency. [4 3] [2 5] 	
b. Apply Strassen's matrix multiplication method to multiply the given two 10 L3 matrices below. Give its time efficiency. [4 3] [2 5]	
b. Apply Strassen's matrix multiplication method to multiply the given two 10 L3 matrices below. Give its time efficiency. [4 3] [2 5]	CO2
OR	
Q.4 a. Obtain topological ordering of elements using DFS and Source Removal 10 L3 Method for the following graph Fig.Q4(a).	CO2
b. Define Heap. Construct a heap for the following data using heap sort. 10 L3 Given the time efficiency of Heap Sort: 7, 4, 3, 1, 2	CO2
Module – 3 Q.5 a. Let $n = 6$, profits = (23, 45, 6, 18, 60, 5) and deadlines = (3, 2, 1, 4, 2, 1). 10 L3	CO1
Q.5 a. Let n = 6, profits = (23, 45, 6, 18, 60, 5) and deadlines = (3, 2, 1, 4, 2, 1). 10 L3 Find the optimal sequence of the execution of jobs using Greedy algorithm.	COI
b. Apply Kruskal algorithm to find minimum spanning tree for the below graph, Fig.Q5(b). 10 L3 Fig.Q5(b)	CO1
1 of 3	

		O.D.	2	21/10	CA15
Q.6	a.	Find the shortest path from vertex "a" to all other vertices for the following graph Fig.Q6(a).	10	L3	CO2
		3 6 4 6			
		Fig.Q6(a)			
	b.	Construct a Huffman code for the following data: Character A B C D - Probability 0.35 0.1 0.2 0.2 0.15 Find: (i) Huffman Tree (ii) Decode the string "1001101101001101"	10	L3	CO2
		Module – 4			
Q.7	a.	Find all pairs shortest path for the following graph, Fig.Q7(a).	10	L3	CO2
		Fig.Q7(a)	-		
	b.	Define transitive closure. Write Warshall's algorithm to compute transitive closure. Find its efficiency. OR	10	L3	CO2
Q.8	a.	Apply multistage graph algorithm to find a minimum cost path from 's' to 't' for the following instance Fig.Q8(a).	10	L3	CO2
	b.	Apply dynamics programming, find the optimal solution for the given instance below. With knapsack capacity W = 5. Item Weight Value	10	·L3	COS
		Module – 5		1	
Q.9	a.	Find the subset from the given set with $d = 15$, $s = \{3, 7, 5, 6\}$ by constructing state space tree.	10	L3	CO2
	b.	Define N-Queen's problem. Find the solution space tree for 4-Queen's problem.	10	L2	CO

			2	22M	CA15
Q.10	a.	Solve the assignment problem using branch and bound method: 1 2 3 4 a 8 1 6 7 b 5 3 2 3 c 4 7 5 7 d 6 5 8 6	10	L3	CO3
	b.	Discuss briefly: (i) Random number generators (ii) Numerical Probabilistic Algorithms (iii) Monte Carlo Algorithms (iv) Las Vegas Algorithm (v) NP complete classes	10	L2	CO1
