


## **18MATDIP41**

| 4        | 0  | OR<br>Circar £(40) 184 £(50) 204 £((0) 226 £(70) 250 £(90) 276 £(00) 2                                                                                               | 04 5.1    |  |
|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 4        | а. | Given $f(40) = 184$ , $f(50) = 204$ , $f(60) = 226$ , $f(70) = 250$ , $f(80) = 276$ , $f(90) = 36$                                                                   |           |  |
|          | b. |                                                                                                                                                                      | )7 Marks) |  |
|          | 0, | Find the real root of the equation $f(x) = xe^{x} - 2 = 0$ correct to three decimal places,                                                                          |           |  |
|          |    | Newton-Raphson method. (0                                                                                                                                            | )7 Marks) |  |
|          | c. | Evaluate $\int \log_{e} x  dx$ , taking 6 equal strips by applying Weddle's rule :                                                                                   |           |  |
|          |    | 4                                                                                                                                                                    |           |  |
|          |    | x44.24.44.64.85.05.2 $y = \log_e x$ 1.38631.43511.48161.52611.56861.60941.6487                                                                                       |           |  |
|          |    |                                                                                                                                                                      | 6 Marks)  |  |
|          |    |                                                                                                                                                                      | 06 Marks) |  |
| Module-3 |    |                                                                                                                                                                      |           |  |
| 5        | a. | Solve: $(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0.$ (0)                                                                                                                  | 07 Marks) |  |
|          | b. | Solve : $(6D^2 + 17D + 12)y = e^{-x}$                                                                                                                                | 07 Marks) |  |
|          | c. | Solve: $y'' + 9y = \cos 2x \cos x$ (0)                                                                                                                               | 06 Marks) |  |
|          |    |                                                                                                                                                                      |           |  |
|          | OR |                                                                                                                                                                      |           |  |
| 6        | a. |                                                                                                                                                                      | 07 Marks) |  |
|          | b. |                                                                                                                                                                      | 07 Marks) |  |
|          | C. | Solve: $(D^2 - 8D + 9)y = 8\sin 5x$ (6)                                                                                                                              | 06 Marks) |  |
|          |    |                                                                                                                                                                      |           |  |
| 7        | 0  | Module-4                                                                                                                                                             |           |  |
| 7        | a. |                                                                                                                                                                      | 07 Marks) |  |
|          | b. | Solve : $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$ , by direct integration . (6)                                                                           | 07 Marks) |  |
|          |    |                                                                                                                                                                      |           |  |
|          | C. | Solve: $\frac{\partial^2 z}{\partial x^2} - a^2 z = 0$ under the conditions $z = 0$ and $\frac{\partial z}{\partial x} = a \sin y$ when $x = 0$ . (6)                | 06 Marks) |  |
|          |    | $\partial x^2$ $\partial x$                                                                                                                                          |           |  |
|          |    |                                                                                                                                                                      |           |  |
|          |    | OR OR                                                                                                                                                                |           |  |
| 8        | a. | Solve the equation $\frac{\partial^2 z}{\partial x^2} + z = 0$ , given that $z = e^y$ and $\frac{\partial z}{\partial x} = 1$ when $x = 0$ . (6)                     | 07 Marks) |  |
|          |    |                                                                                                                                                                      |           |  |
|          | b. | Solve: $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x} = \log_e x$ when $y = 1$ and $z = 0$ when | x = 1.    |  |
|          |    | oxoy y ox                                                                                                                                                            | 07 Marks) |  |
|          | c. | Form the PDE, by eliminating the arbitrary constants a and b from the ed                                                                                             | ,         |  |
|          |    | $z = a \log(x^2 + y^2) + b \tag{9}$                                                                                                                                  | 06 Marks) |  |
|          |    |                                                                                                                                                                      |           |  |
| Module-5 |    |                                                                                                                                                                      |           |  |
| 9        | a. | In a certain computer centre, 47% of the programmers can program in FORTRAN                                                                                          | N 35% in  |  |

a. In a certain computer centre, 47% of the programmers can program in FORTRAN 35% in PASCAL and 20% in COBOL and every programmer can program in at least one of these languages. If the probability that a randomly chosen programmer can program in FORTRAN and PASCAL is 0.23, COBOL and FORTRAN is 0.12, PASCAL and COBOL is 0.11, determine the probability that a randomly chosen programmer can program in all three languages. (07 Marks)

2 of 3

## **18MATDIP41**

- b. Three students x, y, z write an examination. Their chances of passing are  $\frac{1}{2}$ ,  $\frac{1}{3}$  and  $\frac{1}{4}$  respectively. Find the probability that, (i) All of them pass (ii) at least one of them passes and (iii) at least two of them pass. (07 Marks)
- c. A person is known to speak truth 3 out of 4 times. He throws a die and reports that the die shows a six. Find the probability that it is actually a SIX. (06 Marks)

## OR

- 10a. Find the probability that the birth days of 5 persons chosen at random will fall in 12 different<br/>calendar months.(07 Marks)
  - b. If A and B are events with  $P(A \cup B) = \frac{7}{8}$ ,  $P(A \cap B) = \frac{1}{4}$ ,  $P(A \cap \overline{B}) = \frac{1}{3}$ , find P(A), P(B)and  $P(\overline{A} \cap B)$ . (07 Marks)
  - c. Given  $P(A) = \frac{1}{4}$ ,  $P(B) = \frac{1}{3}$  and  $P(AUB) = \frac{1}{2}$ , evaluate  $P(A \land B)$ ,  $P(B \land A)$ ,  $P(A \land B)$  and  $P(A \land B)$ . (06 Marks)

3 of 3