BMATC101

First Semester B.E./B.Tech. Degree Examination, June/July 2024 LIBRAR Mathematics – I for Civil Engineering Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Derive an expression for the radius of curvature for Cartesian curve $y = f(x)$.	6	L1	CO1
	b.	Show that the pedal equation of the curve $r^m \cos m\theta = a^m$ is $pr^{m-1} = a^m$.	7	L3	CO1
	c.	Show that the radius of curvature at any point of the Cardiod $r = a(1 - \cos\theta)$ varies as \sqrt{r} .	7	L3	CO1
		OR			
Q.2	a.	With usual notations, prove that for the curve, $r = f(\theta)$, $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$	8	L3	CO1
	b.	For the curve $y = \frac{ax}{a+x}$, show that $\left(\frac{2\rho}{a}\right)^{\frac{2}{3}} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$.	7	L3	CO1
	c.	Using modern mathematical tool, write a programme to plot the sine and cosine curve.	5	L3	COS
		Module – 2			
Q.3	a.	Evaluate $\lim_{x\to 0} \left(\frac{1^x+2^x+3^x}{3}\right)^{\frac{1}{x}}.$	6	LI	CO2
	b.	If $u = e^{ax + by} f(ax - by)$, prove that $b \frac{\partial u}{\partial x} + a \frac{\partial u}{\partial y} = 2abu$	7	1.2	CO2
	c.	If $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	7	L2	CO2
		OR			
Q.4	a.	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$ find the value of $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z}$.	7	L1	CO2
	b.	Show that $f(x, y) = x^3 + y^3 - 3xy + 1$ is minimum at (1, 1).	7	L3	CO
	c.	Using modern mathematical tool, write a programme to show that $u_{xx} + u_{yy} = 0$, given $u = e^{x}[x \cos y - y \sin y]$.	6	L3	COS
		Module – 3			
Q.5	a.	Solve: $(1-x^2)\frac{dy}{dx} - xy = 1$.	6	L3	CO3
	b.	Find the orthogonal trajectories of the family of confocal and coaxial parabolas $r = \frac{2a}{1 + \cos \theta}$.	7	L1	CO3
	c.	Solve $yp^2 + (x - y)p - x = 0$	7	1.2	CO.

		OR			
Q.6	a.	Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$.	6	L3	CO3
	b.	A metal ball is heated to a temperature of 100° C and at time $t = 0$ it is placed in heater which is maintained at 40° C. If temperature of the ball is reduced to 60° C in 4 min, find the time at which the temperature of the ball is 50° C.	7	L2	CO3
	c.	Find the general and singular solution of $(px - y)(x - py) = 2p$ by using the	7	L2	CO3
		substitution $x^2 = u$ and $y^2 = v$.			
		Module – 4			
Q.7	a.	Solve: $(D^2 - D + 2)y = \sin 2x$.	6	L3	CO4
	b.	Solve by the method of variation of parameters $y'' - 2y' + y = e^x \log x$.	7	L3	CO4
	c.	Solve: $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$.	7	L3	CO4
		OR			
Q.8	a.	Solve: $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$.	6	L3	CO4
	b.	Find the complete solution of, $(D^2 - 2D + 2)y = x + e^x$.	7	L3	CO4
	c.	Solve $(1 + x^2) \frac{d^2 y}{dx^2} + (1 + x) \frac{dy}{dx} + y = \sin(2\log(1 + x))$	7	L3	CO4
		Module – 5		1	1
Q.9	a.	Find the rank of the matrix, $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$	6	L1	CO4
	b.	Investigate the values of λ and μ so that the equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ have, (i) No solution (ii) Unique solution (iii) Infinite solution	7	L2	CO4
	c.	Using the Rayleigh's power method, find the largest Eigen value and the corresponding Eigen vector of the matrix, $A = \begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 8 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial Eigen vector perform four iterations.	7	L2	CO4
		OR		T	
Q.10	a.	Apply Gauss-Seidal iterative method to solve the equations $10x + y + z = 12$, $x + 10y + z = 12$, $x + y + 10z = 12$ by taking the initial approximation to the solution as $(0, 0, 0)$ (Correspond 4 iterations)	7	L2	CO4
	b.	approximation to the solution as, (0, 0, 0) (Carry out 4 iterations). Solve the system of equations by Gauss Elimination method.	7	L3	CO4
	IJ.	x + y + z = 6, $x - y + 2z = 5$, $3x + y + z = 8$	/	L3	CO4
	c.	Using modern mathematical tool write a programme to test the consistency	6	L3	CO5