GBCS SCHEME

0													
				1		1	1	BESCK204C/ BESCKC204					
TOBT						1		BENCK / U4C / BENCK C / U4					
						1		DESCREEGE DESCREEGE					
CDI			1		1	1							
						1	1						

Second Semester B.E/B.Tech. Degree Supplementary Examination, June/July 2024

Introduction to Electronics and Communication

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
1	a.	What is a regulated power supply? Draw the block diagram of DC power	8	L2	CO1
T	a.	supply and explain the individual blocks with principal components.	O	1.2	COI
	b.	Draw the circuit diagram of voltage doublers and the working principle.	6	L2	CO1
	c.	Mention the advantages of negative feedback in amplifier circuits. With	6	L2	CO1
	0.	relevant equations and diagram, explain the concept of negative feedback.	U		COI
		OR			
2	a.	With a neat circuit diagram and waveform explain the working of a full wave	8	L2	CO1
		bridge rectifier.			
	b.	What is an amplifier? Explain its types.	5	L2	CO1
	c.	What is voltage regulator? Draw the circuit diagram of voltage regulator and	7	L2	CO1
		explain the operation.			
		Module – 2			
3	a.	Draw the circuit diagram and input and output waveform of the following	9	L2	CO ₂
		operational amplifier circuits.		::	
		i) Differentiator			
		ii) Integrator			
		iii) Voltage follower.			
	b.	Write a note on ideal characteristics of an op-amp.	6	L2	CO ₂
	c.	What is oscillator? Mention the condition of oscillators.	5	L1	CO2
		OR	,	,	
4	a.	With circuit diagram, explain the operation of a Wien bridge oscillator.	8	L2	CO2
	b.	Explain the single state astable oscillator with circuit diagram.	8	L1	CO2
	c.	Define the following operational amplifiers parameters and write their typical	4	L1	CO ₂
		values:			
		i) Slew rate			
		ii) Input offset voltage.			
		Module – 3			
5	a.	Implement full adder using two half address and one or gate. Reduce the	8	L3	CO3
		equations for sum and carry.			
	b.	Convent the following:	6	L2	CO3
		i) $(110.1101)_2 = (?)_{10}$			
		ii) $(847.951)_{10} = (?)_8$, 2	
		iii) $(CAD.BF)_{16} = (?)_{10}$.		-	~ -
	c.	Write the step-by-step procedure to design a combinational circuit.	6	L1	CO3
		1 of 2			

		BESCK204C	BE	SCK	C204
		OR	-	* 4	000
6	a.	State and prove De Morgan's theorem with its truth table for 2 variables.	8	L1	CO3
	b.	i) Subtract using (r - 1)'s complement method: a) 4456 ₁₀ - 34234 ₍₁₀₎ ii) Subtract using r's complement method	6	L3	CO3
	51	a) $1010100_{(2)} - 1000100_{(2)}$.			
	c.	Using basic Boolean theorems, prove, i) $(x + y)(x + z) = x + yz$	6	L3	CO3
		ii) $xy + xz + y\overline{z} = xz + y\overline{z}$.			
		Module – 4			
7	a.	What is an embedded system? Differentiate between embedded system and general purpose computing system.	8	L2	CO4
	b.	Discuss the typical embedded system elements.	7	L2	CO4
	c.	Write a note on classification of embedded systems.	5	L1	CO4
		OR OR			
8	a.	List the comparison between microprocessor and microcontroller.	6	L1	CO4
	b.	Write short notes on 7 – segment LED display.	7	L2	CO4
	C.	Write a note on transducers. Explain one type of sensor and actuator with its operation.	7	L2	CO4
		Module – 5			
9	a.	List out the advantages of digital communication over analog communication.	5	L1	CO5
	b.	Brief about modern communication system with its block diagram.	7	L2	CO5
	c.	Explain with a neat diagram, the concept of radio wave propagation and its different types.	8	L2	CO5
		OR			
10	a.	Describe the classification of RF (Radio Frequency) spectrum with applications in communication systems.	7	L2	CO5
	b.	Describe about ratio signal transmission and multiple access techniques.	7	L2	CO5
	C.	Explain the following with the help of waveforms: i) ASK ii) FSK iii) BPSK.	6	L2	CO5

* * * * *